Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

где – отрицательно ориентированный замкнутый контур, принадлежащий области аналитичности функции.





При обходе контура бесконечно удаленная точка остается слева.

Из определения следует, что вычет относительно равен коэффициенту при в лорановском разложении в окрестности взятому с противоположным знаком:

(7)

Между утверждениями (7) и (2), несмотря на их внешнее сходство, имеется существенное различие. Дело в том, что в разложении Лорана в окрестности точки член принадлежит правильной (а не главной) части ряда, и может быть отличным от нуля и тогда, когда аналитична в бесконечности.

Пример 4. Найдем вычет функции относительно точки .

Лорановское разложение данной функции имеет вид:

,

Так как коэффициент при равен 1, то .

Теорема 1. (Основная теорема Коши о вычетах). Если функция аналитична в области , за исключением изолированных особых точек то для любого замкнутого контура , охватывающего эти точки

. (8)

Основная теорема о вычетах имеет важное значение для приложений. Она позволяет вычислять интегралы по замкнутому контуру от функции комплексного переменного, не прибегая к первообразным или криволинейным интегралам. С помощью вычетов вычисляются определенные и несобственные интегралы от функций действительного переменного.

Пример 5. Вычислим интеграл , где .

Простые полюсы и находятся внутри контура , поэтому, применяя первую теорему о вычетах можно записать

.●

Теорема 2. Если функция аналитична в расширенной плоскости (т.е. включающей точку ), за исключением конечного числа изолированных особых точек то

(9)

Или

. (10)

Пример 6. Вычислим интеграл , где .

Подынтегральная функция имеет десять простых полюсов , лежащих на единичной окружности. Лорановское разложение функции в окрестности бесконечно удаленной точки имеет вид

, .

Так как , то, применяя вторую теорему о вычетах можно записать .

Таким образом .●







Дата добавления: 2015-10-18; просмотров: 662. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия