Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

где – отрицательно ориентированный замкнутый контур, принадлежащий области аналитичности функции.





При обходе контура бесконечно удаленная точка остается слева.

Из определения следует, что вычет относительно равен коэффициенту при в лорановском разложении в окрестности взятому с противоположным знаком:

(7)

Между утверждениями (7) и (2), несмотря на их внешнее сходство, имеется существенное различие. Дело в том, что в разложении Лорана в окрестности точки член принадлежит правильной (а не главной) части ряда, и может быть отличным от нуля и тогда, когда аналитична в бесконечности.

Пример 4. Найдем вычет функции относительно точки .

Лорановское разложение данной функции имеет вид:

,

Так как коэффициент при равен 1, то .

Теорема 1. (Основная теорема Коши о вычетах). Если функция аналитична в области , за исключением изолированных особых точек то для любого замкнутого контура , охватывающего эти точки

. (8)

Основная теорема о вычетах имеет важное значение для приложений. Она позволяет вычислять интегралы по замкнутому контуру от функции комплексного переменного, не прибегая к первообразным или криволинейным интегралам. С помощью вычетов вычисляются определенные и несобственные интегралы от функций действительного переменного.

Пример 5. Вычислим интеграл , где .

Простые полюсы и находятся внутри контура , поэтому, применяя первую теорему о вычетах можно записать

.●

Теорема 2. Если функция аналитична в расширенной плоскости (т.е. включающей точку ), за исключением конечного числа изолированных особых точек то

(9)

Или

. (10)

Пример 6. Вычислим интеграл , где .

Подынтегральная функция имеет десять простых полюсов , лежащих на единичной окружности. Лорановское разложение функции в окрестности бесконечно удаленной точки имеет вид

, .

Так как , то, применяя вторую теорему о вычетах можно записать .

Таким образом .●







Дата добавления: 2015-10-18; просмотров: 662. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия