Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изолированные особые точки функции комплексного переменного





В зависимости от проведения функции в окрестности особой точки различают три типа особенностей.

Изолированная особая точка функции называется:

а) устранимой особой точкой, если существует конечный предел

, (1)

б) полюсом, если , (2)

причем полюсом -гопорядка, если

, (3)

и простым полюсом при ;

в) существенно особой точкой, если не существует (ни конечный, ни бесконечный).

Имеют место следующие утверждения:

1. Для того, чтобы изолированная особая точка функции была устранимой, необходимо и достаточно, чтобы лорановское разложение в окрестности точки не содержало главной части, т.е. имело вид

. (4)

2. Для того, чтобы изолированная особая точка функции была полюсом -го порядка, необходимо и достаточно, чтобы главная часть лорановского разложения содержала лишь конечное число членов

, . (5)

3. Для того, чтобы изолированная особая точка функции была существенно особой, необходимо и достаточно, чтобы главная часть лорановского разложения содержала бесконечно много членов.

Пример 1. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Так как главная часть отсутствует, то является устранимой особой точкой.

Пример 2. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Главная часть состоит из двух слагаемых, поэтому – полюс второго порядка.

Пример 3. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Главная часть разложения бесконечна, поэтому – существенно особая точка.●

Точка называется нулем функции , если . Точка называется нулем порядка , если

, а . (6)

Ряд Тейлора в окрестности точки – нуля порядка функции – имеет вид

Теорема. Для того, чтобы точка была нулем порядка функции , необходимо и достаточно, чтобы имело место равенство

,(7)







Дата добавления: 2015-10-18; просмотров: 1097. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия