Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изолированные особые точки функции комплексного переменного





В зависимости от проведения функции в окрестности особой точки различают три типа особенностей.

Изолированная особая точка функции называется:

а) устранимой особой точкой, если существует конечный предел

, (1)

б) полюсом, если , (2)

причем полюсом -гопорядка, если

, (3)

и простым полюсом при ;

в) существенно особой точкой, если не существует (ни конечный, ни бесконечный).

Имеют место следующие утверждения:

1. Для того, чтобы изолированная особая точка функции была устранимой, необходимо и достаточно, чтобы лорановское разложение в окрестности точки не содержало главной части, т.е. имело вид

. (4)

2. Для того, чтобы изолированная особая точка функции была полюсом -го порядка, необходимо и достаточно, чтобы главная часть лорановского разложения содержала лишь конечное число членов

, . (5)

3. Для того, чтобы изолированная особая точка функции была существенно особой, необходимо и достаточно, чтобы главная часть лорановского разложения содержала бесконечно много членов.

Пример 1. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Так как главная часть отсутствует, то является устранимой особой точкой.

Пример 2. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Главная часть состоит из двух слагаемых, поэтому – полюс второго порядка.

Пример 3. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Главная часть разложения бесконечна, поэтому – существенно особая точка.●

Точка называется нулем функции , если . Точка называется нулем порядка , если

, а . (6)

Ряд Тейлора в окрестности точки – нуля порядка функции – имеет вид

Теорема. Для того, чтобы точка была нулем порядка функции , необходимо и достаточно, чтобы имело место равенство

,(7)







Дата добавления: 2015-10-18; просмотров: 1097. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия