Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изолированные особые точки функции комплексного переменного





В зависимости от проведения функции в окрестности особой точки различают три типа особенностей.

Изолированная особая точка функции называется:

а) устранимой особой точкой, если существует конечный предел

, (1)

б) полюсом, если , (2)

причем полюсом -гопорядка, если

, (3)

и простым полюсом при ;

в) существенно особой точкой, если не существует (ни конечный, ни бесконечный).

Имеют место следующие утверждения:

1. Для того, чтобы изолированная особая точка функции была устранимой, необходимо и достаточно, чтобы лорановское разложение в окрестности точки не содержало главной части, т.е. имело вид

. (4)

2. Для того, чтобы изолированная особая точка функции была полюсом -го порядка, необходимо и достаточно, чтобы главная часть лорановского разложения содержала лишь конечное число членов

, . (5)

3. Для того, чтобы изолированная особая точка функции была существенно особой, необходимо и достаточно, чтобы главная часть лорановского разложения содержала бесконечно много членов.

Пример 1. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Так как главная часть отсутствует, то является устранимой особой точкой.

Пример 2. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Главная часть состоит из двух слагаемых, поэтому – полюс второго порядка.

Пример 3. Особой точкой функции является точка . Разложение этой функции в ряд Лорана имеет вид:

Главная часть разложения бесконечна, поэтому – существенно особая точка.●

Точка называется нулем функции , если . Точка называется нулем порядка , если

, а . (6)

Ряд Тейлора в окрестности точки – нуля порядка функции – имеет вид

Теорема. Для того, чтобы точка была нулем порядка функции , необходимо и достаточно, чтобы имело место равенство

,(7)







Дата добавления: 2015-10-18; просмотров: 1097. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия