Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Где аналитична в точке и .





Для определения порядка нуля функции полезно помнить, что если нуль порядка для и нуль порядка для , то – нуль порядка для произведения , порядка (при ) для частного ; – правильная точка, не являющаяся нулем при и особая точка при .

Теорема. Для того, чтобы точка была полюсом порядка для функции , необходимо и достаточно, чтобы эта точка была нулем порядка для функции .

Рассмотрим особенности функции в бесконечно удаленной точке.

Под точкой понимают абстрактную точку плоскости , окрестностью которой, является множество чисел , удовлетворяющих неравенству , где – любое действительное положительное число.

Ряд Лорана функции в окрестности точки определяют с помощью замены переменной для функции в окрестности точки . Ряд Лорана в окрестности точки имеет вид

,

где главная часть,

правильная часть.

Поведение функции в окрестности бесконечно удаленной точки дает возможность классифицировать ее особенности в этой точке.

1. Точка называется устранимой особой точкой функции, если , где .

Ряд Лорана в этом случае не содержит положительных степеней

.

2. Точка называется полюсом функции, если .

Если ряд Лорана в окрестности содержит конечное число положительных степеней:

,

то точка называется полюсом порядка .

3. Точка называется существенно особой для функции, если не существует.

Ряд Лорана в этом случае содержит бесконечное число положительных степеней .

Заметим, что точка называется нулем порядка функции , если точка является нулем порядка для функции .







Дата добавления: 2015-10-18; просмотров: 596. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия