Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное, векторное и смешанное произведения векторов





 

Скалярным произведением двух ненулевых векторов и называется число, равное произведению длин этих векторов на косинус угла между ними: , где - угол между векторами и (рис.4).

Рис.4

Пусть заданы два вектора в координатной форме и

Скалярное произведение двух ненулевых векторов в координатной форме равно сумме произведений соответствующих координат этих векторов: .

Косинус угла между векторами вычисляется по формуле: .

Условием перпендикулярности ненулевых векторов и является равенство нулю их скалярного произведения:

.

Векторным произведением двух векторов и называется вектор , который:

1) имеет модуль, численно равный площади параллелограмма, построенного на векторах и : ;

2) перпендикулярен к плоскости этого параллелограмма;

3) направлен в такую сторону, с которой кратчайший поворот от к рассматривается совершающимся против часовой стрелки (такое расположение векторов , и называется правой тройкой векторов) (рис.5).

Рис.5

 

Векторное произведение ненулевых векторов вычисляется через координаты данных векторов и

следующим образом:

Равенство нулю векторного произведения двух ненулевых векторов является условием их коллинеарности, т.е. ½½ .

 

Смешанное произведение трех векторов , и , которое обозначается или , есть скаляр, абсолютная величина которого равна объему параллелепипеда, построенного на векторах , и , как на ребрах.

Смешанное произведение трех векторов вычисляется в координатной форме по формуле:

.

Равенство нулю смешанного произведения трех ненулевых векторов является условием их компланарности: .

 

Задача. Определить внутренние углы и треугольника c вершинами в точках

Решение. Внутренний угол - это угол между векторами и , который вычисляется через скалярное произведение векторов по формуле:

 

Координаты векторов: .

Отсюда,

Аналогично, находя предварительно , получим

Отсюда

Задача. Вычислить площадь треугольника с вершинами в точках и высоту (рис.6).







Дата добавления: 2015-12-04; просмотров: 224. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия