Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Тейлора с остаточными членами в форме Пеано и Лагранжа





При вычислении пределов функций мы использовали таблицу 1 эквивалентных бесконечно малых. Например, при вычислении предела мы использовали формулы Однако этих формул не достаточно для вычисления предела

Нужны более точные формулы или так называемые асимптотические разложения высших порядков. Переходя к описанию таких разложений, введем следующее понятие.

Определение 5. Пусть функция определена в некоторой проколотой окрестности

точки Говорят, что функция имеет в точке асимптотическое разложение го порядка, если существуют числа такие, что в некоторой в некоторой проколотой окрестности представляется в виде

Здесь Равенство (3) означает, что функция аппроксимируется (приближенно равна) в некоторой малой окрестности точки многочленом. В каком случае функция имеет асимптотическое разложение порядка? Ответ на этот вопрос содержится в следующем утверждении.

Теорема 2. Пусть функция имеет в точке производные до го порядка включительно. Тогда имеет в точке асимптотическое разложение порядка вида

(формулу (4) называют формулой Тейлора с остаточным членом в форме Пеано или локальной формулой Тейлора).

Если в (4) положить то получим формулу называемую формулой Маклорена-Тейлора. Приведем формулы Маклорена-Тейлора для основных элементарных функций.

Теорема 3. Имеют место следующие разложения:

Доказательство этих формул базируется на подсчёте производной го порядка соответствующей функции. Докажем, например, формулу (2).

Итак, пусть По теореме 1 имеем

Значит, в формуле

будут отсутствовать все четные степени а слагаемые с нечетными степенями имеют вид Следовательно имеет место формула 2.

Замечание 1. В формуле 2 остаточный член можно записать в виде а в формуле 3–

в виде (почему?).

Теорема 2 аппроксимирует функцию лишь в достаточно малой окрестности точки Условия представления функции на некотором отрезке (где может быть достаточно большим) по формуле Тейлора описаны в следующем утверждении.

Теорема 4. Пусть функция удовлетворяет следующим условиям:

1) существуют и непрерывны на отрезке ;

2) производная существует и конечна по-крайней мере на интервале

Тогда для всех функция представляется в виде

где точка находится между и

Формулу (5) называют (глобальной) формулой Тейлора с остаточным членом в форме Лагранжа.

Если в формуле (5) положить то получим равенство или, обозначая будем иметь

Эту формулу называют формулой Лагранжа. Она верна в случае, когда функция непрерывна отрезке а существует и конечна по-крайней мере на интервале

 







Дата добавления: 2015-12-04; просмотров: 363. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия