Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бесконечно большие функции и их связь с бесконечно малыми





Пусть функция определена в некоторой проколотой окрестности точки

Определение 5. Функция называется бесконечно большой функцией (ББФ) при если для всякого существует число такое, что

При этом пишут

Заметим, что – это не число, а символ, поэтому бесконечный предел – это всего лишь обозначение бесконечно большой функции. Тем не менее при вычислениях удобно относиться к бесконечному пределу как к обычному, хотя для бесконечных пределов и существуют свои правила действий, несколько отличные от правил действий над конечными пределами (см. ниже таблицу 2).

Если функция сохраняет знак в некоторой проколотой окрестности точки и является при этом бесконечно большой функцией, то естественно писать

(в зависимости от знака функции в указанной окрестности). Более точно:

В этих определениях и определении 5 фигурирует окрестность

конечной предельной точки Почти дословно определяются бесконечно большие функции на бесконечности. В этом случае под точкой следует понимать один из символов: а под окрестностью окрестность соответствующей бесконечно удаленной точки Например,

Нетрудно доказать следующее утверждение.

Теорема 7. Пусть функция не обращается в нуль в некоторой проколотой окрестности точки Тогда справедливо высказывание

Иначе говоря, для того чтобы функция была бесконечно малой при необходимо и достаточно, чтобы обратная к ней по величине функция была бесконечно большой при

Используя эту теорему, можно доказать истинность следующих операций над бесконечно большими функциями:

Таблица 2

И, наконец, отметим ещё ряд свойств, связанных с пределами функций.

 

Теорема 7 (о пределе промежуточной функции). Пусть в некоторой окрестности точки выполняются неравенства и пусть, кроме того, крайние функции имеют пределы в точке и эти пределы равны друг другу, т.е.

Тогда существует предел промежуточной функции и он равен т. е. Теорема 8. Пусть в некоторой окрестности точки выполняются неравенства и пусть существуют пределы

Тогда (докажите это утверждение самостоятельно).

Теорема 9 (о знаке предела). Если в некоторой проколотой окрестности функция неотрицательна (неположительна) и существует предел то (соответственно ).

В тех случаях, когда при вычислении того или иного предела непосредственный переход к пределу при приводит к одному из символов типа

возникает ситуация, в которой становятся неприменимы теоремы об арифметических действиях над пределами. В таких случаях возникает неопределенность при решении вопроса о существовании предела или его величины. Эта неопределенность может быть снята после некоторых тождественных преобразований. В этом случае говорят, что тождественные преобразования приводят к раскрытию неопределенности. Поясним сказанное примером.

Пусть требуется вычислить предел Если в указанном отношении мы сразу же перейдем к пределу, то получим неопределенность типа Что скрывается под этим символом, мы пока не знаем. Попрубуем избавиться от неопределенности. Применим для этого таблицу 1 стандартных асимптотических разложений и теорему 5. Получим

Лекция 2. Односторонние пределы функции в точке. Непрерывность функции. Разрывные функции и классификация точек разрыва. Производная функции, ее геометрический и физический смысл. Производная сложной функции. Таблица производных







Дата добавления: 2015-12-04; просмотров: 219. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия