Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПАРАБОЛА





Параболой называется геометрическое место точек плоскости, для каждой из которых расстояние до фиксированной точки этой плоскости, называемой фокусом, равно расстоянию до фиксированной прямой, лежащей в той же плоскости и называемой директрисой параболы.

Чтобы получить уравнение кривой, соответствующей этому определению, введем подходящую систему координат. Для этого из фокуса опустим перпендикуляр на директрису . Начало координат расположим на середине отрезка , ось направим вдоль отрезка так, чтобы ее направление совпадало с направлением вектора . Ось проведем перпендикулярно оси (рис. 12.15).

 

Рис.12.15.

 

Теорема 12.4 Пусть расстояние между фокусом и директрисой параболы равно . Тогда в выбранной системе координат парабола имеет уравнение

(12.10)


Доказательство. В выбранной системе координат фокусом параболы служит точка , а директриса имеет уравнение (рис. 12.15).

Пусть -- текущая точка параболы. Тогда по формуле (10.4) для плоского случая находим

Расстоянием от точки до директрисы служит длина перпендикуляра , опущенного на директрису из точки . Из рисунка 12.15 очевидно, что . Тогда по определению параболы , то есть

Возведем обе части последнего уравнения в квадрат:

откуда

После приведения подобных членов получим уравнение (12.10).

Уравнение (12.10) называется каноническим уравнением параболы.

Предложение 12.4 Парабола обладает осью симметрии. Если парабола задана каноническим уравнением, то ось симметрии совпадает с осью .

Доказательство. Проводится так же, как и доказательство (предложения 12.1).

Точка пересечения оси симметрии с параболой называется вершиной параболы.

Если переобозначить переменные , , то уравнение (12.10) можно записать в виде

который совпадает с обычным уравнением параболы в школьном курсе математики. Поэтому параболу нарисуем без дополнительных исследований (рис. 12.16).

 

Рис.12.16.Парабола

 

Пример 12.6 Постройте параболу . Найдите ее фокус и директрису.

Решение. Уравнение является каноническим уравнением параболы, , . Осью параболы служит ось , вершина находится в начале координат, ветви параболы направлены вдоль оси . Для построения найдем несколько точек параболы. Для этого придаем значения переменному и находим значения . Возьмем точки , , . Учитывая симметрию относительно оси , рисуем кривую (рис. 12.17)

 

 

Рис.12.17.Парабола, заданная уравнением

 

Фокус лежит на оси на расстоянии от вершины, то есть имеет координаты . Директриса имеет уравнение , то есть .

Парабола так же, как и эллипс, обладает свойством, связанным с отражением света (рис. 12.18). Свойство сформулируем опять без доказательства.

Предложение 12.5 Пусть -- фокус параболы, -- произвольная точка параболы, -- луч с началом в точке параллельный оси параболы. Тогда нормаль к параболе в точке делит угол, образованный отрезком и лучом , пополам.

 

Рис.12.18.Отражение светового луча от параболы

 

Это свойство означает, что луч света, вышедший из фокуса , отразившись от параболы, дальше пойдет параллельно оси этой параболы. И наоборот, все лучи, приходящие из бесконечности и параллельные оси параболы, сойдутся в ее фокусе. Это свойство широко используется в технике. В прожекторах обычно ставят зеркало, поверхность которого получается при вращении параболы вокруг ее оси симметрии (параболическое зеркало). Источник света в прожекторах помещают в фокусе параболы. В результате прожектор дает пучок почти параллельных лучей света. Это же свойство используется и в приемных антеннах космической связи и в зеркалах телескопов, которые собирают поток параллельных лучей радиоволн или поток параллельных лучей света и концентрируют его в фокусе зеркала.







Дата добавления: 2015-12-04; просмотров: 254. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия