ПАРАБОЛА
Параболой называется геометрическое место точек плоскости, для каждой из которых расстояние до фиксированной точки этой плоскости, называемой фокусом, равно расстоянию до фиксированной прямой, лежащей в той же плоскости и называемой директрисой параболы. Чтобы получить уравнение кривой, соответствующей этому определению, введем подходящую систему координат. Для этого из фокуса опустим перпендикуляр на директрису . Начало координат расположим на середине отрезка , ось направим вдоль отрезка так, чтобы ее направление совпадало с направлением вектора . Ось проведем перпендикулярно оси (рис. 12.15).
Рис.12.15.
Теорема 12.4 Пусть расстояние между фокусом и директрисой параболы равно . Тогда в выбранной системе координат парабола имеет уравнение
Доказательство. В выбранной системе координат фокусом параболы служит точка , а директриса имеет уравнение (рис. 12.15). Пусть -- текущая точка параболы. Тогда по формуле (10.4) для плоского случая находим Расстоянием от точки до директрисы служит длина перпендикуляра , опущенного на директрису из точки . Из рисунка 12.15 очевидно, что . Тогда по определению параболы , то есть Возведем обе части последнего уравнения в квадрат: откуда После приведения подобных членов получим уравнение (12.10). Уравнение (12.10) называется каноническим уравнением параболы. Предложение 12.4 Парабола обладает осью симметрии. Если парабола задана каноническим уравнением, то ось симметрии совпадает с осью . Доказательство. Проводится так же, как и доказательство (предложения 12.1). Точка пересечения оси симметрии с параболой называется вершиной параболы. Если переобозначить переменные , , то уравнение (12.10) можно записать в виде который совпадает с обычным уравнением параболы в школьном курсе математики. Поэтому параболу нарисуем без дополнительных исследований (рис. 12.16).
Рис.12.16.Парабола
Пример 12.6 Постройте параболу . Найдите ее фокус и директрису. Решение. Уравнение является каноническим уравнением параболы, , . Осью параболы служит ось , вершина находится в начале координат, ветви параболы направлены вдоль оси . Для построения найдем несколько точек параболы. Для этого придаем значения переменному и находим значения . Возьмем точки , , . Учитывая симметрию относительно оси , рисуем кривую (рис. 12.17)
Рис.12.17.Парабола, заданная уравнением
Фокус лежит на оси на расстоянии от вершины, то есть имеет координаты . Директриса имеет уравнение , то есть . Парабола так же, как и эллипс, обладает свойством, связанным с отражением света (рис. 12.18). Свойство сформулируем опять без доказательства. Предложение 12.5 Пусть -- фокус параболы, -- произвольная точка параболы, -- луч с началом в точке параллельный оси параболы. Тогда нормаль к параболе в точке делит угол, образованный отрезком и лучом , пополам.
Рис.12.18.Отражение светового луча от параболы
Это свойство означает, что луч света, вышедший из фокуса , отразившись от параболы, дальше пойдет параллельно оси этой параболы. И наоборот, все лучи, приходящие из бесконечности и параллельные оси параболы, сойдутся в ее фокусе. Это свойство широко используется в технике. В прожекторах обычно ставят зеркало, поверхность которого получается при вращении параболы вокруг ее оси симметрии (параболическое зеркало). Источник света в прожекторах помещают в фокусе параболы. В результате прожектор дает пучок почти параллельных лучей света. Это же свойство используется и в приемных антеннах космической связи и в зеркалах телескопов, которые собирают поток параллельных лучей радиоволн или поток параллельных лучей света и концентрируют его в фокусе зеркала.
|