Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ





Прямую в пространстве можно задать различными способами (точкой и вектором, параллельной ей; двумя точками и т. п.), в связи с чем рассматривают различные виды ее уравнений.

Векторно-параметрическое уравнение прямой. Направляющим вектором прямой называется любой ненулевой вектор, параллельный ей. Если даны точка И. направляющий вектор Прямой (рис. 4.8), то

(4.18)

Где - радиус-вектор точки - радиус-вектор точки

- переменная величина (параметр). Уравнение (4.18) называется векторно-параметрическим уравнением прямой, проходящей через точку И имеющей направляющий вектор . Равенство (4.18) следует из определения суммы векторов и необходимого и достаточного условия коллинеарности двух векторов.

Параметрические уравнения прямой. Переходя от векторного соотношения (4.18) к координатным, получаем

(4.19)

Эти уравнения называются параметрическими уравнениями прямой, проходящей через точку Н имеющей направляющий вектор

Канонические уравнения прямой. Выражая параметр t из уравнений (4.19) н приравнивая полученные выражения, находим, что

(4.20)

Уравнения (4.20) называются каноническими уравнениями прямой, проходящей через точку И имеющей направляющий вектор

Уравнение прямой, проходящей через две точки. Если даны две точки

То в качестве ее направляющего вектора можно

Взять вектор

Поэтому уравнения (4.20) примут вид

(4.21)

Пример 4.10. Записать параметрические и канонические уравнения прямой, проходящей через точку Параллельно вектору

Так как в данном случае

Параметрические уравнения (4Л 9) принимают вид а канонические уравнения (4.20) запишутся так:

Пример 4.11. Составить уравнения прямой; проходящей через точки Привести эти уравнения к параметрическому виду. ¦

Поскольку , то уравнения (4.21) примут вид

, или

Обозначая равные отношения буквой Получаем параметрические уравнения данной прямой:







Дата добавления: 2015-12-04; просмотров: 241. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия