Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ





Прямую в пространстве можно задать различными способами (точкой и вектором, параллельной ей; двумя точками и т. п.), в связи с чем рассматривают различные виды ее уравнений.

Векторно-параметрическое уравнение прямой. Направляющим вектором прямой называется любой ненулевой вектор, параллельный ей. Если даны точка И. направляющий вектор Прямой (рис. 4.8), то

(4.18)

Где - радиус-вектор точки - радиус-вектор точки

- переменная величина (параметр). Уравнение (4.18) называется векторно-параметрическим уравнением прямой, проходящей через точку И имеющей направляющий вектор . Равенство (4.18) следует из определения суммы векторов и необходимого и достаточного условия коллинеарности двух векторов.

Параметрические уравнения прямой. Переходя от векторного соотношения (4.18) к координатным, получаем

(4.19)

Эти уравнения называются параметрическими уравнениями прямой, проходящей через точку Н имеющей направляющий вектор

Канонические уравнения прямой. Выражая параметр t из уравнений (4.19) н приравнивая полученные выражения, находим, что

(4.20)

Уравнения (4.20) называются каноническими уравнениями прямой, проходящей через точку И имеющей направляющий вектор

Уравнение прямой, проходящей через две точки. Если даны две точки

То в качестве ее направляющего вектора можно

Взять вектор

Поэтому уравнения (4.20) примут вид

(4.21)

Пример 4.10. Записать параметрические и канонические уравнения прямой, проходящей через точку Параллельно вектору

Так как в данном случае

Параметрические уравнения (4Л 9) принимают вид а канонические уравнения (4.20) запишутся так:

Пример 4.11. Составить уравнения прямой; проходящей через точки Привести эти уравнения к параметрическому виду. ¦

Поскольку , то уравнения (4.21) примут вид

, или

Обозначая равные отношения буквой Получаем параметрические уравнения данной прямой:







Дата добавления: 2015-12-04; просмотров: 241. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия