Студопедия — Свойства и функции ДНК.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства и функции ДНК.






ДНК, или дезоксирибонуклеиновой кислоты является основным наследственного материала, присутствующего во всех клетках организма и в основном предусматривает синяя печать ячейки функций, роста, воспроизводства и смерти. Структура ДНК, под названием double-stranded спиральной структуры была впервые описана Уотсон и Крик в 1953 году.

От затем огромный прогресс был достигнут в синтез, последовательности и манипуляции ДНК. ДНК в эти дни может быть виртуализации или проанализированы для мелочей и даже генов может быть вставлена чтобы вызвать изменения в ДНК функции и структуры.

Фун-ции

Основное назначение наследственного материала — это хранение наследственной информации, на базе которой формируется фенотип. Большинство признаков и свойств организма обусловлено синтезом белков, выполняющих различные функции, Таким образом, в наследственном материале должна быть записана информация о структуре чрезвычайно разнообразных белковых молекул, специфика которых зависит от качественного и количественного состава аминокислот, а также от порядка расположения их в пептидной цепи. Следовательно, в молекулах нуклеиновых кислот должен быть закодирован аминокислотный состав белков.
Еще в начале 50-х годов было высказано предположение о способе записи генетической информации, при котором кодирование отдельных аминокислот в молекуле белка должно осуществлятья с помощью определенных сочетаний четырех различных нуклеотидов в молекуле ДНК. Для шифровки более чем 20 аминокислот необходимое количество сочетаний обеспечивается только триплетным кодом, т. е. кодом, включающим три рядом стоящих нуклеотида. В этом случае число сочетаний из четырех азотистых оснований по три равно 41= 64. Предположение о триплетности генетического кода позднее получило экспериментальное подтверждение, а за период с 1961 по 1964 г. был выяснен шифр, с помощью которого в молекулах нуклеиновых кислот записывается порядок аминокислот в пептиде.
Из табл. 6 видно, что из 64 триплетов 61 триплет кодирует ту или иную аминокислоту, причем отдельные аминокислоты шифруются более чем одним триплетом, или кодоном (фенилаланин, лейцин, валин, серии и т. д.). Несколько триплетов не кодируют аминокислот, и их функции связывают с обозначением концевого участка белковой молекулы.
Считывание информации, записанной в молекуле нуклеиновой кислоты, осуществляется последовательно, ко-Дон за кодоном, так, что каждый нуклеотид входит в состав лишь одного триплета.
Изучение генетического кода у живых организмов с разным уровнем организации показало универсальность этого механизма записи информации в живой природе.
Таким образом, исследованиями середины XX века раскрыт механизм записи наследственной информации в молекулах нуклеиновых кислот с помощью биологического кода, который характеризуется следующими свойствами: а) триплетностью — аминокислоты шифруются триплетами нуклеотидов — кодонами; б) специфичностью — каждый триплет кодирует лишь определенную аминокислоту; в) универсальностью — у всех живых организмов кодирование одних и тех же аминокислот осуществляется одинаковыми кодонами; г) вырожденностью — многие аминокислоты шифруются более чем одним триплетом; д) неперекрываемостью — считывание информации осуществляется последовательно триплет за триплетом: ААГЦТЦАГЦЦАТ.

Помимо записи и хранения биологической информации, функцией материала наследственности являются ее воспроизведение и передача новому поколению в процессе размножения клеток и организмов. Эта функция наследственного материала осуществляется молекулами ДНК в процессе ее редупликации, т. е. абсолютно точного воспроизведения структуры, благодаря осуществлению принципа комплементарности (см. 2.1).
Наконец, третьей функцией наследственного материала, представленного молекулами ДНК, является обеспечение специфических процессов в ходе реализации заключенной в ней информации. Эта функция осуществляется при участии различных видов РНК, обеспечивающих процесс трансляции, т. е. сборку белковой молекулы, происходящий в цитоплазме на основе информации, поступившей из ядра (см. 2.4). В ходе реализации наследственной информации, хранящейся в виде молекул ДНК в хромосомах ядра, выделяют несколько этапов.
1. Считывание информации с молекулы ДНК в процессе синтеза иРНК — транскрипция, которая осуществляется на одной из цепей двойной спирали ДНК— кодогенной цепи по принципу комплементарности (см. 2.4).
2. Подготовка продукта транскрипции к выходу в цитоплазму — созревание иРНК.
3. Сборка на рибосомах пептидной цепочки из аминокислот на основании информации, записанной в молекуле иРНК, с участием транспортных тРНК — трансляция (см. 2.4).
4. Формирование вторичной, третичной и четвертичной структур белка, что соответствует формированию функционирующего белка (простой признак).
5. Формирование сложного признака в результате участия продуктов нескольких генов (белков-ферментов или других белков) в биохимических процессах.

Структура двойной спирали ДНК, скрепленная с помощью только водородных связей, может быть легко разрушена. Разрыв водородных связей между полинуклеотидными цепями ДНК можно осуществить в сильнощелочных растворах (при рН > 12,5) или при нагревании. После этого цепи ДНК полностью разделяются. Такой процесс называют денатурацией или плавлением ДНК.

При денатурации изменяются некоторые физические свойства ДНК, например ее оптическая плотность. Азотистые основания поглощают свет в ультрафиолетовой области (с максимумом, близким к 260 нм). ДНК поглощает свет почти на 40 % меньше, чем смесь свободных нуклеотидов того же состава. Это явление называют гипохромным эффектом, а обусловлено оно взаимодействием оснований при их расположении в двойной спирали.

Любое отклонение от двухцепочечного состояния оказывает влияние на изменение величины этого эффекта, т.е. происходит сдвиг оптической плотности в сторону значения, характерного для свободных оснований. Таким образом, за денатурацией ДНК можно наблюдать по изменению ее оптической плотности.

При нагревании ДНК среднюю температуру диапазона, при котором происходит разделение цепей ДНК, называют точкой плавления и обозначают как Т пл. В растворе Т пл обычно лежит в интервале 85-95 °С. Кривая плавления ДНК всегда имеет одну и ту же форму, но ее положение на температурной шкале зависит от состава оснований и условий денатурации (рис. 1). Пары G-C, соединенные тремя водородными связями, являются более тугоплавкими, чем пары А-Т, имеющие две водородные связи, поэтому при увеличении содержания G-C-nap значение Т пл возрастает. ДНК, на 40 % состоящая из G-C (характерно для генома млекопитающих), денатурирует при Т пл около 87 °С, тогда как ДНК, содержащая 60 % G-C, имеет Т пл
около 95 °С.

На температуру денатурации ДНК (кроме состава оснований) оказывает влияние ионная сила раствора. При этом чем выше концентрация моновалентных катионов, тем выше Т пл. Значение Т пл также сильно меняется при добавлении к раствору ДНК таких веществ, как формамид (амид муравьиной кислоты HCONH2), который
дестабилизирует водородные связи. Его присутствие позволяет снизить Т пл, до 40 °С.

Процесс денатурации является обратимым. Явление восстановления структуры двойной спирали, исходя из двух разделений комплементарных цепей, называют ренатурацией ДНК. Для осуществления ренатурации, как правило, достаточно тудить раствор денатурированной ДНК.

В ренатурации участвуют две комплементарные последовап ности, которые были разделены при денатурации. Однако ренатл ровать могут любые комплементарные последовательности, кото способны образовать двухцепочечную структуру. Если совместно. отжигают одноцепочечные ДНК, происходящие из различных точников, то формирование двухцепочечной структуры ДНК называют гибридизацией.

 







Дата добавления: 2015-12-04; просмотров: 284. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия