Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения задач. В дождевальной установке вода подается сначала по трубе диаметром 40 мм, а затем по трубе диаметром 24 мм





ЗАДАЧА №1

В дождевальной установке вода подается сначала по трубе диаметром 40 мм, а затем по трубе диаметром 24 мм. Статистические давления в широкой и узкой частях трубы равны соответственно 150 кПа и 60 кПа. Определить скорость течения воды в узкой части трубы.

Дано:  

Решение: Скорость движения жидкости в горизонтальной трубе переменного сечения (если не принимать во внимание трения) изменяется в соответствии с уравнением Бернулли:

Кроме того, как следует из уравнения неразрывности потока жидкости, , где и - сечения трубы. Таким образом, неизвестная скорость может быть выражена через искомую скорость v2, т. е

Подставим это значение v1 в уравнение Бернулли:

Отсюда:

Следовательно, .

Проверим размерность полученного выражения. Член, стоящий в квадратных скобках, безразмерный, поэтому

Таким образом, размерность правой части полученного выражения совпадает с размерностью скорости.

Подставим числовые значения заданных величин:

Ответ: скорость течения воды в узкой части трубы равна 14, 4 (м/с).

 

ЗАДАЧА № 2

В касторовое масло опустили стальной шарик диаметром 1 мм и определили, что расстояние в 5 см он прошел за 14,2с. Считая движение шарика равномерным, определить вязкость касторового масла, если его плотность равна , а плотность стали 7860 .

Дано:  

Решение: На шарик, движущийся в вязкой жидкости, действуют три силы:

1) сила тяжести (вниз)

2) выталкивающая, архимедова, сила (вверх)

2) cила трения, определяемая по закону Стокса (вверх)

При равномерном движении шарика алгебраическая сумма этих сил должна равняться нулю, т. е

После несложных преобразований получаем:

Поскольку скорость равномерного движения шарика

Проверим размерность полученного выражения:

Таким образом, размерность правой части полученного выражения совпадает с размерностью коэффициента внутреннего трения.

Подставляем числовые значения:

Ответ: коэффициент вязкости касторового масла равен 1,07

 

 

ЗАДАЧА №3

Определить время протекания крови через капилляр вискозиметра, если вода протекает через него за 10 с. Объемы воды и крови одинаковы.

Решение: Эта задача решается применением закона Гагена-Пуазейля, согласно которому объемный расход жидкости при ламинарном течении в трубе пропорционален четвертой степени радиуса трубы и градиенту давления и обратно пропорционален коэффициенту вязкости:

где – объемный расход жидкости, т. е объем жидкости, протекающий через сечения трубы в единицу времени;

r – радиус трубы;

∆р – градиент давления;

L – длина трубы;

– динамический коэффициент вязкости.

Из этой формулы следует, что объем жидкости, протекающий через сечения трубы за время t, равен (с учетом где - плотность жидкости).

Пусть через одну и ту же трубу за одно и то же время протекает одинаковое количество жидкостей, одна из которых – исследуемая, а другая – эталонная, т. е обладающая известным коэффициентом вязкости. Так как при этом V=Vэ, то, очевидно, можно написать:

После сокращения на одинаковые множители получим:

Отсюда время протекания исследуемой жидкости будет равно:

(в этих формулах мы обозначили индексом «э» величины, относящиеся к эталонной жидкости).

Коэффициенты вязкости воды и крови соответственно равны: и , плотности воды и крови соответственно равны: .

Произведем вычисления:

Ответ: кровь будет протекать через капилляр вискозиметра 12,6 (мин).







Дата добавления: 2015-12-04; просмотров: 2910. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия