Состав некоторых пластичных смазок, выпускаемых предприятиями для различных отраслей промышленности.
. Для получения необходимой структуры смазки следует тщательно выдерживать технологические режимы: порядок, температуру и продолжительность смешения компонентов, охлаждение и гомогенизацию смеси, введение присадок и наполнителей. Для получения смазок могут использоваться готовые загустители.Кроме того, некоторые загустители (мыла и полимочевины) могут быть приготовлены in situ (то есть в процессе приготовления самой смазки путем смешивания реагентов в дисперсионной среде). Приготовление смазок различных типов имеет свои особенности. В общем случае, приготовление смазок из готовых загустителей заключается в интенсивном механическом диспергировании загустителя в масле. Для углеводородных и некоторых мыльных смазок бывает достаточно простого перемешивания при нагревании. Такие загустители, как глины,аэросил, требуют более активного воздействия, к которому относятся циркуляция смеси по контуру, промежуточная гомогенизация. Приготовление загустителя in situ происходит в процессе смешения реагентов в дисперсионной среде или ее части. Например, для приготовления мыла в реактор загружают дисперсионную среду, жиры и водный раствор (или суспензию) гидроксида металла. Например, пальмовое масло плюс каустическая сода при нагревании дают глицерин и натриевое мыло. Для получения мыла при изготовлении консистентных смазок применяют самые разнообразные животные и растительные жиры. Еще шире выбор минеральных масел разных сортов и разной вязкости в качестве основного компонента консистентных смазок. Обычно используемые жировые материалы для литиевых смазок: -гидрогенизированное касторовое масло (HCO) или гидроксистеариновая -кислота (HSA). Как основание используется гидроксид лития (LiOH). Смесь нагревают до +200°C и более градусов и перемешивают в течение заданного времени (10-40 мин). В реакторе происходит омыление жира с образованием мыла и глицерина. Глицерин остается в смазке, а избыток воды выпаривается. Для этого используются специальные выпарные аппараты. Полностью воду из смазки удалить нельзя, и поэтому часть ее (до нескольких процентов на смазку) остается. Иногда это оказывается полезным. Например,вода в гидратированных кальциевых смазках служит стабилизатором их структуры. Чтобы произвести комплексную смазку, в первом (производственном) процессе добавляется дополнительный третий компонент. Этот компонентможет быть дополнительной жирной кислотой (для комплексной литиевой смазки наиболее обычными являются себациновая, азелаиновая или борная кислоты). Другим примером приготовления загустителя in situ может служить получение полимочевины. Для этого в дисперсионной среде последовательно смешивают амины и изоцианаты, наблюдая в процессе реакции между ними интенсивное загущение смеси с выделением тепла. Завершается стадия диспергирования загустителя образованием гомогенного расплава или тонкой суспензии. На следующих стадиях производства смазок (охлаждение, перемешивание и размол) формируется однородная масса смазки. Охлаждение – ответственная стадия, на которой начинается образование структуры смазки. Оно начинается в реакторе и продолжается в специальных скребковых холодильниках примерно 3-5 часов. Существуют другие способы охлаждения, например, в тонком слое на вращающихся барабанах. Как только сформировалась структура смазки, продукт поступает на конечную стадию. В конечной стадии (продолжительность 2-4 часа) добавляется большая часть базового масла и присадок. При охлаждении загуститель кристаллизуется в виде сетки мелких волокон, удерживающей базовое масло. Гомогенизация смазки завершает образование ее структуры. Она заключается в интенсивном механическом воздействии на гель. Простейшим гомогенизатором являются трехвальцовые краскотерки, в которых через зазоры между вращающимися вальцами пропускается смазка. Более эффективны клапанные и роторно-щелевые гомогенизаторы, в которых смазка пропускается с большой скоростью под давлением через малые регулируемые зазоры. Существуют гомогенизаторы и других типов. Деаэрация – стадия, которой иногда пренебрегают. Однако удаление воздуха из готовой смазки улучшает ее структуру и внешний вид. Фильтрация исходных компонентов и готовых смазок также необходима для получения качественного продукта с хорошими антифрикционными характеристиками. Фильтрация смазок – процесс достаточно трудный. Для этого смазки пропускают через металлические сетки, патронно-щелевые фильтры или фильтры других, более сложных конструкций. Технология получения углеводородных смазок намного проще, чем мыльных, и сводится, в основном, к сплавлению при перемешивании компонентов, выпарке воды и охлаждению готового расплава. Технологические процессы производства смазок могут быть периодическими (обычно при выпуске большого ассортимента некрупными партиями) или непрерывными (целесообразны при выработке крупных партий одного сорта смазки).
Вопросы для самоконтроля 1. Классификация и назначение товарных нефтепродуктов 2. Бензин. Основные характеристики и марки. 3. Антидетонационные добавки 4. Дизельное топливо. Показатели качества. 5. Основные характеристики и марки 6. Мазут. Основные свойства, марки и применение 7. Классификация смазок и их характеристика
План практического занятия 1. Характеристика нефтяной промышленности Украины 2. Классификация и назначение товарных нефтепродуктов 3. Бензин. Основные характеристики и марки. Антидетонационные добавки 4. Дизельное топливо. Показатели качества. Основные характеристики и марки 5. Мазут. Основные свойства, марки и применение 6. Классификация смазок и их характеристика
|