Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методика расчета





 

С учетом изложенного рассмотрим методику оценки суммарной погрешности при нормальном законе распределения ее составляющих

 

1. Пусть суммарная погрешность состоит из n составляющих

 

для каждой из которых заданы оценки среднего квадратического отклонения.

 

2. Эти составляющие погрешности подразделяют на аддитивные и мультипликативные .

 

3.Из аддитивных погрешностей выделяют группы сильно коррелированных между собой составляющих погрешностей, и внутри этих групп производится алгебраическое суммирование оценок их среднего квадратического отклонения по формуле

 

 

где К- число коррелированных составляющих погрешности в данной i-группе; означает, что для составляющих с положительной корреляцией нужно брать значение со знаком (+), а для составляющих с отрицательной корреляцией - со знаком (-). Такое суммирование погрешностей называется алгебраическим суммированием. Абсолютные значения коэффициентов корреляции могут находится в пределах 0,7 -…1, поэтому алгебраическое суммирование обычно дает несколько завышенное значение суммарной погрешности.

 

4.После того как все группы аддитивных коррелированных погрешностей выделены и внутри их выполнено алгебраическое суммирование, суммарные погрешности для каждой из группам и оставшиеся вне групп остальные аддитивные погрешности можно считать уже некоррелированными и суммировать их по правилу геометрического суммирования.

 

 

 

Найденное таким путем среднее квадратическое отклонение аддитивной составляющей соответствует началу диапазона измерения.

 

5.Из мультипликативных погрешностей также выделяют группы сильно коррелированных между собой составляющих погрешностей, и внутри этих групп находят оценки их среднего квадратического отклонения.

 

 

6. После того, как для всех групп мультипликативных коррелированных погрешностей найдены их оценки, производится их геометрическое суммирование между собой и с остальными некоррелированными погрешностями, т.е. находят оценку среднего квадратического отклонения суммарной мультипликативной погрешности

 

 

 

7. Для определения оценки среднего квадратического отклонения погрешности в конце диапазона измерения геометрически суммируют результирующую аддитивную и мультипликативную составляющую:

 

 

8. Для заданной доверительной вероятности Р находят оценки доверительного интервала суммарной погрешности соответственно в начале и в конце диапазона измерения:

 

где t-коэффициент, значение которого в зависимости от принятой доверительной вероятности Р выбирают из таблицы.

 

9. Затем находят оценку суммарной погрешности для произвольного значения измеряемой величины в виде

(2.2)

где значения u выражены в процентах.

Таким образом, вероятностная оценка (2,2) учитывает как аддитивную, так и мультипликативную составляющую погрешности измерений.

 

 







Дата добавления: 2015-12-04; просмотров: 212. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия