Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методика расчета





 

С учетом изложенного рассмотрим методику оценки суммарной погрешности при нормальном законе распределения ее составляющих

 

1. Пусть суммарная погрешность состоит из n составляющих

 

для каждой из которых заданы оценки среднего квадратического отклонения.

 

2. Эти составляющие погрешности подразделяют на аддитивные и мультипликативные .

 

3.Из аддитивных погрешностей выделяют группы сильно коррелированных между собой составляющих погрешностей, и внутри этих групп производится алгебраическое суммирование оценок их среднего квадратического отклонения по формуле

 

 

где К- число коррелированных составляющих погрешности в данной i-группе; означает, что для составляющих с положительной корреляцией нужно брать значение со знаком (+), а для составляющих с отрицательной корреляцией - со знаком (-). Такое суммирование погрешностей называется алгебраическим суммированием. Абсолютные значения коэффициентов корреляции могут находится в пределах 0,7 -…1, поэтому алгебраическое суммирование обычно дает несколько завышенное значение суммарной погрешности.

 

4.После того как все группы аддитивных коррелированных погрешностей выделены и внутри их выполнено алгебраическое суммирование, суммарные погрешности для каждой из группам и оставшиеся вне групп остальные аддитивные погрешности можно считать уже некоррелированными и суммировать их по правилу геометрического суммирования.

 

 

 

Найденное таким путем среднее квадратическое отклонение аддитивной составляющей соответствует началу диапазона измерения.

 

5.Из мультипликативных погрешностей также выделяют группы сильно коррелированных между собой составляющих погрешностей, и внутри этих групп находят оценки их среднего квадратического отклонения.

 

 

6. После того, как для всех групп мультипликативных коррелированных погрешностей найдены их оценки, производится их геометрическое суммирование между собой и с остальными некоррелированными погрешностями, т.е. находят оценку среднего квадратического отклонения суммарной мультипликативной погрешности

 

 

 

7. Для определения оценки среднего квадратического отклонения погрешности в конце диапазона измерения геометрически суммируют результирующую аддитивную и мультипликативную составляющую:

 

 

8. Для заданной доверительной вероятности Р находят оценки доверительного интервала суммарной погрешности соответственно в начале и в конце диапазона измерения:

 

где t-коэффициент, значение которого в зависимости от принятой доверительной вероятности Р выбирают из таблицы.

 

9. Затем находят оценку суммарной погрешности для произвольного значения измеряемой величины в виде

(2.2)

где значения u выражены в процентах.

Таким образом, вероятностная оценка (2,2) учитывает как аддитивную, так и мультипликативную составляющую погрешности измерений.

 

 







Дата добавления: 2015-12-04; просмотров: 212. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия