Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задания для отчета по лабораторной работе





1. Имеется круглое отверстие в непрозрачной преграде, на которое падает плоская световая волна. За отверстием расположен экран. Что будет происходить с интенсивностью света в центре наблюдаемой на экране дифракционной картины, если экран удалять от преграды?

2. Точечный источник света с l=500 нм помещен на расстоянии a =0.5 м перед непрозрачной преградой с отверстием r =0.5 мм. Определить расстояние b от преграды до точки, для которой число m открываемых отверстием зон Френеля будет равно: а) 1, б) 5, в) 10.

3. Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять. Расстояния от диафрагмы до источника и экрана равны a =100 см и b =125 см. Определить длину волны света, если максимум освещенности в центре дифракционной картины на экране наблюдается при r1 =1.00 мм и следующий максимум при r2= 1.29 мм.

4. Расстояние от точечного источника света (l=0.5 мкм) до плоской диафрагмы с круглым отверстием радиусом r =1 мм и экраном составляет a =1 м. Определить расстояние b от экрана до диафрагмы, при котором отверстие открывало бы для центральной точки Р три зоны Френеля.

5. Как изменится интенсивность света в точке Р (см. задачу 4), если убрать диафрагму совсем?

6. На узкую щель падает нормально монохроматический свет. Угол j отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 10. Скольким длинам волн падающего света равна ширина щели?

7. На щель шириной b= 20 мкм падает нормально параллельный пучок монохроматического света (l=500 нм). Найти ширину изображения щели на экране, удаленном от щели на расстояние l= 1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещенности.

8. Свет с длиной волны 0.5 мкм падает на щель ширины 10 мм под углом 300 к ее нормали. Найти угловое положение первых минимумов, расположенных по обе стороны центрального максимума.

9. Свет падает на щель по нормали. Будет ли перемещаться по экрану дифракционная картина от щели при перемещении щели параллельно самой себе?

10. Высота прямоугольной щели вдвое больше ее ширины. В какой плоскости свет будет размыт на больший угол – в горизонтальной или в вертикальной?

11. Дифракционную решетку, постоянная которой d =0.004 мм, освещают светом с длиной волны l=687 нм. Найти угол дифракции для спектра второго порядка.

12. Определить длину волны l2 для линии в дифракционном спектре третьего порядка, совпадающей с изображением линии спектра четвертого порядка, у которой длина волны l1= 490 нм.

13. Какова ширина спектра первого порядка, полученного на экране, отстоящем на расстоянии L =3 м от дифракционной решетки с периодом d= 0.01 мм? Длины волн спектра заключены в пределах от l1=0.38 мкм до l2=0.76 мкм.

14. Свет, падающий нормально на дифракционную решетку, состоит из двух резких спектральных линий с длинами волн l1=490 нм (голубой свет) и l2=600 нм (оранжевый свет). Первый дифракционный максимум для линии с длиной волны l1 располагается под углом j = 10°. Найти угловое расстояние Dj между линиями в спектре второго порядка.

15. При падении на дифракционную решетку монохроматического света первый дифракционный максимум наблюдают под углом дифракции j1=6.90, а последний – под углом j2=740. Чему равен максимальный порядок спектра для данной решетки?

16. Какой наименьшей разрешающей силой R должна обладать дифракционная решетка, чтобы с ее помощью можно было разрешить две спектральные линии калия (l1=578 нм и l2=580 нм)?

17. С помощью дифракционной решетки с периодом d=20 мкм требуется разрешить дублет натрия (l1=589.0 нм и l2=589.6 нм) в спектре второго порядка. При какой наименьшей длине l решетки это возможно?

18. Определить угловую дисперсию Dj для угла дифракции j=300 и длины волны l=600 нм.

19. Дифракционная решетка шириной 2.4 см содержит 16000 штрихов. Определить ее угловую дисперсию в первом и втором порядках.

20. Угловая дисперсия Dj дифракционной решетки для излучения некоторой длины волны (при малых углах дифракции) составляет 5 нм. Определить разрешающую силу R этой решетки для получения той же длины волны, если длина l решетки равна 2 см.

 

N вар N вопросов и задач
Баллы
       
         
         
         
         
         

 







Дата добавления: 2015-12-04; просмотров: 420. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия