Информации
1,1.1, Понятие информации. Термин информация используется во многих науках и во многих сферах человеческой деятельности. Он происходит от латинского слова «informatio», что означает «сведения, разъяснения, изложение». Несмотря на привычность этого термина, строгого и общепринятого определения не существует. В рамках рассматриваемой нами науки «информация» является первичным и, следовательно, неопределимым понятием, подобно понятиям «точка» в математике, «тело» в механике, «поле» в физике. Несмотря на то, что этому понятию невозможно дать строгое определение, имеется возможность описать его через проявляемые свойства и мы попытаемся это сделать. Как известно, в материальном мире все физические объекты, окружающие нас, являются либо телами, либо полями. Физические объекты, взаимодействуя друге другом, порождают сигналы различных типов. В общем случае любой сигнал - это изменяющийся во времени "физический процесс. Такой процесс может содержать различные характеристики. Характеристика, которая используется для представления данных, называется параметром сигнала. Если параметр сигнала принимает ряд последовательных значений и их конечное число, то сигнал называется дискретным. Если параметр сигнала — непрерывная во времени функция, то сигнал называется непрерывным. В свою очередь, сигналы могут порождать в физических телах изменения свойств. Это явление называется регистрацией сигналов. Сигналы, зарегистрированные на материальном носителе, называются данными. Существует большое количество физических методов регистрации сигналов на материальных носителях. Это могут быть механические воздействия, перемещения, изменения формы или магнитных, электрических, оптических параметров, химического состава, кристаллической структуры. В соответствии с методами регистрации, данные могут храниться и транспортироваться на различных носителях. Наиболее часто используемый и привычный носитель -бумага; сигналы регистрируются путем изменения ее оптических свойств. Сигналы могут быть зарегистрированы и путем изменения магнитных свойств полимерной ленты с нанесенным ферромагнитным покрытием, как это делается в магнитофонных записях, и путем изменения химических свойств в фотографии. Данные несут информацию о событии, но не являются самой информацией, так как одни и те же данные могут восприниматься (отображаться или еще говорят интерпретироваться) в сознании разных людей совершенно по-разному. Например, текст, написанный на русском языке (т.е. данные), даст различную информацию человеку, знающему алфавит и язык, и человеку, не знающему их. Чтобы получить информацию, имея данные, необходимо к ним применить методы, которые преобразуют данные в понятия, воспринимаемые человеческим сознанием. Методы, в свою очередь, тоже различны. Например, человек, знающий русский язык, применяет адекватный метод, читая русский текст. Соответственно, человек, не знающий русского языка и алфавита, применяет неадекватный метод, пытаясь понять русский текст. Таком образом, можно считать, что информация ~ это продукт взаимодействия данных и адекватных методов. Из вышесказанного следует, что информация не является статическим объектом, она появляется и существует в момент слияния методов и данных, все прочее время она находится в форме данных. Момент слияния данных и методов называется информационным процессом (рис. 1.1). Рис. 1.1. Формирование информации Человек воспринимает первичные данные различными органами чувств (их у нас пять — зрение, слух, осязание, обоняние, вкус), и на их основе сознанием могут быть построены вторичные абстрактные (смысловые, семантические) данные. Таким образом, первичная информация может существовать в виде рисунков, фотографий, звуковых, вкусовых ощущений, запахов, а вторичная — в виде чисел, символов, текстов, чертежей, радиоволн, магнитных записей. 1.1.2, Свойства информации Понятие «информация», как уже было сказано ранее, используется многими научными дисциплинами, имеет большое количество разнообразных свойств, но каждая дисциплина обращает внимание на те свойства информации, которые ей наиболее важны. В рамках нашего рассмотрения наиболее важными являются такие свойства, как дуализм, полнота, достоверность, адекватность, доступность, актуальность. Рассмотрим их подробнее. Дуализм информации характеризует ее двойственность. С одной стороны, информация объективна в силу объективности данных, с другой - субъективна, в силу субъективности применяемых методов. Иными словами, методы могут вносить в большей или меньшей степени субъективный фактор и таким образом влиять на информацию в целом. Например, два человека читают одну и ту же книгу и получают подчас весьма разную информацию, хотя прочитанный текст, т.е. данные, были одинаковы. Более объективная информация применяет методы с меньшим субъективным элементом. Полнота информации характеризует степень достаточности данных для принятия решения или создания новых данных на основе имеющихся. Неполный набор данных оставляет большую долю неопределенности, т.е. большое число вариантов выбора, а это потребует применения дополнительных методов, например, экспертных оценок, бросание жребия и т.п. Избыточный набор данных затрудняет доступ к нужным данным, создает повышенный информационный шум, что также вызывает необходимость дополнительных методов, например, фильтрацию, сортировку. И неполный и избыточный наборы затрудняют получение информации и принятие адекватного решения. Достоверность информации — это свойство, характеризующее степень соответствия информации реальному объекту с необходимой точностью. При работе с неполным набором данных достоверность информации может характеризоваться вероятностью, например, можно сказать, что при бросании монеты с вероятностью 50 % выпадет герб. Адекватность информации выражает степень соответствия создаваемого с помощью информации образа реальному объекту, процессу, явлению. Полная адекватность достигается редко, так как обычно приходится работать с не самым полным набором данных, т.е. присутствует неопределенность, затрудняющая принятие адекватного решения. Получение адекватной информации также затрудняется при недоступности адекватных методов. Доступность информации — это возможность получения информации при необходимости. Доступность складывается из двух составляющих: из доступности данных и доступности методов. Отсутствие хотя бы одного дает неадекватную информацию. Актуальность информации. Информация существует во времени, так как существуют во времени все информационные процессы. Информация, актуальная сегодня, может стать совершенно ненужной по истечении некоторого времени. Например, программа телепередач на нынешнюю неделю будет неактуальна для многих телезрителей на следующей неделе. 1.1,3. Понятие количество, информации Свойство полноты информации негласно предполагает, что имеется возможность измерять количество информации. Какое количество информации содержится в данной книге, какое количество информации в популярной песенке? Что содержит больше информации: роман «Война и мир» или сообщение, полученное в письме от товарища? Ответы на подобные вопросы не просты и не однозначны, так как во всякой информации присутствует субъективная компонента. А возможно ли вообще объективно измерить количество информации? Важнейшим результатом теории информации является вывод о том, что в определенных, весьма широких условиях, можно, пренебрегая качественными особенностями информации, выразить ее количество числом, а следовательно, сравнивать количество информации, содержащейся в различных группах данных. Количеством информации называют числовую характеристику информации, отражающую ту степень неопределенности, которая исчезает после получения информации. Рассмотрим пример: дома осенним утром, старушка предположила, что могут быть осадки, а могут и не быть, а если будут, то в форме снега или в форме дождя, т.е. «бабушка надвое сказала — то ли будет, то ли нет, то ли дождик, то ли снег». Затем, выглянув в окно, увидела пасмурное небо и с большой вероятностью предположила — осадки будут, т.е., получив информацию, снизила количество вариантов выбора. Далее, взглянув на наружный термометр, она увидела, что температура отрицательная, значит, осадки следует ожидать в виде снега. Таким образом, получив последние данные о температуре, бабушка получила полную информацию о предстоящей погоде и исключила все, кроме одного, варианты выбора. Приведенный пример показывает, что понятия «информация», '•неопределенность», «возможность выбора» тесно связаны. Получаемая информация уменьшает число возможных вариантов выбора (т.е. неопределенность), а полная информация не оставляет вариантов вообще. За единицу информации принимается один бит (англ. bit –binary digit — двоичная цифра). Это количество информации, при котором неопределенность, т.е. количество вариантов выбора, уменьшается вдвое или, другими словами, это ответ на вопрос, требующий односложного разрешения — да или нет. Бит — слишком мелкая единица измерения информации. На практике чаще применяются более крупные единицы, например, байт., являющийся последовательностью из восьми бит. Именно восемь битов, или один байт, используется для того, чтобы закодировать символы алфавита, клавиши клавиатуры компьютера. Один байт также являе1ся минимальной единицей адресуемой памяти компьютера, т.е. обратиться в память можно к байту, а не биту. Широко используются еще более крупные производные единицы информации: 1 Килобайт (Кбайт) = 1024 байт = 210 байт, 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт, 1 Гигабайт (Гбайт) - 1024 Мбайт - 2'° байт, 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт.
За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации. Но данная единица используется редко в компьютерной технике, что связано с аппаратными особенностями компьютеров. 1,1,4. информационные процессы Получение информации тесно связано с информационными процессами, поэтому имеет смысл рассмотреть отдельно их виды. Сбор данных - это деятельность субъекта по накоплению данных с целью обеспечения достаточной полноты. Соединяясь с адекватными методами, данные рождают информацию, способную помочь в принятии решения. Например, интересуясь ценой товара, его потребительскими свойствами, мы собираем информацию для того, чтобы принять решение: покупать или не покупать его. Передача данных - это процесс обмена данными. Предполагается, что существует источник информации, канал связи, приемник информации, и между ними приняты соглашения о порядке обмена данными, эти. соглашения называются протоколами обмена. Например, в обычной беседе между двумя людьми негласно принимается соглашение, не перебивать друг друга во время разговора. Хранение данных - это поддержание данных в форме, постоянно готовой к выдаче их потребителю. Одни и те же данные могут быть востребованы не однажды, поэтому разрабатывается способ их хранения (обычно на материальных носителях) и методы доступа к ним по запросу потребителя. Обработка данных - это процесс преобразования информации от исходной ее формы до определенного результата. Сбор, накопление, хранение информации часто не являются конечной целью информационного процесса. Чаще всего первичные данные привлекаются для решения какой-либо проблемы, затем они преобразуются шаг за шагом в соответствии с алгоритмом решения задачи до получения выходных данных, которые после анализа пользователем предоставляют необходимую информацию.
1.1.5. Информация в жизни человечества. Как мы уже выяснили, человечество со дня своего выделения из животного мира значительную часть своего времени и внимания уделяло информационным процессам. На первых этапах носителем данных была память, и информация от одного человека к другому передавалась устно. Этот способ передачи информации был ненадежен и подвержен большим искажениям, ввиду естественного свойства памяти утрачивать редко используемые данные. По мере развития цивилизации, объемы информации, которые необходимо было накапливать и передавать, росли, и человеческой памяти стало не хватать — появилась письменность. Это великое изобретение было сделано шумерами около шести тысяч лет назад. Оно позволило наряду с простыми записями счетов, векселей, рецептов записывать наблюдения за звездным небом, за погодой, за природой. Изменился смысл информационных сообщений. Появилась возможность обобщать, сопоставлять, переосмысливать ранее сохраненные сведения. Это же в свою очередь дало толчок развитию истории, литературы, точным наукам и в конечном итоге изменило общественную жизнь. Изобретение письменности характеризует первую информационную революцию. Дальнейшее накопление человечеством информации привело к увеличению числа людей, пользовавшихся ею, но письменные труды одного человека могли быть достоянием небольшого окружения. Возникшее противоречие было разрешено созданием печатного станк а. Эта веха в истории цивилизации характеризуется как вторая информационная революция началась и XVI в.). Доступ к информации перестал быть уделом избранных, появилась возможность многократно увеличить объем обмена информацией, что привело к большим изменениям в науке, культуре и общественной жизни. Третья информационная революция связывается с открытием электричества и появлением (в конце XIX в.) на его основе новых средств коммуникации - телефона, телеграфа, радио. Возможности накопления информации для тех времен стали поистине безграничными, а скорость обмена очень высокой. К середине XX в. появились быстрые технологические процессы, управлять которыми человек не успевал. Проблема управления техническими объектами могла решаться только с помощью универсальных автоматов, собирающих, обрабатывающих данные и выдающих решение в форме управляющих команд. Ныне эти автоматы называются компьютерами. Бурно развивавшаяся наука и промышленность привели к росту Информационных ресурсов в геометрической прогрессии, что породило проблемы доступа к большим объемам информации. Наше время отмечается как четвертая информационная революция. Пользователями информации стали миллионы людей. Появились дешевые компьютеры, доступные миллионам пользователей. Компьютеры стали мультимедийными,, т.е. они обрабатывают различные виды информации: звуковую, графическую, видео и др. Это, в свою очередь, дало толчок к широчайшему использованию компьютеров в различных областях науки, техники, производства, быта. Средства связи получили повсеместное распространение, а компьютеры для совместного участия в информационном процессе соединяются в компьютерные сети. Появилась всемирная компьютерная сеть Интернет, услугами которой пользуется значительная часть населения планеты, оперативно получая и обмениваясь данными, т.е. формируется единое мировое информационное пространство. В настоящее время круг людей, занимающихся обработкой информации, вырос до небывалых размеров, а скорость обмена стала просто фантастической, компьютеры применяются практически во всех областях жизни людей. На наших глазах появляется информационное общество, где акцент внимания и значимости смещается с традиционных видов ресурсов (материальные, финансовые, энергетические и пр.) на информационный ресурс, который, хотя всегда существовал, но не рассматривался ни как экономическая, ни как иная категория. Информационные ресурсы - это отдельные документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных, других информационных системах). Иными словами, информационные ресурсы — это знания, подготовленные людьми для социального использования в обществе и зафиксированные на материальном носителе. Информационные ресурсы страны, региона, организации все чаще рассматриваются как стратегические ресурсы, аналогичные по значимости запасам сырья, энергии, ископаемых и прочим ресурсам. Развитие мировых информационных ресурсов позволило: • превратить деятельность по оказанию информационных услуг в • сформировать мировой и внутригосударственный рынок информационных услуг; • повысить обоснованность и оперативность принимаемых решений в фирмах, банках, биржах, промышленности, торговле и др. 1.2. Предмет и структура информатики Термин информатика получил распространение с середины Информатика — молодая, очень бурно развивающаяся наука, поэтому строгого и точного определения ее предмета пока не сформулировано. В одних источниках информатика определяется как наука, изучающая алгоритмы, т.е. процедуры, позволяющие за конечное число шагов преобразовать исходные данные в конечный результат, в других — на первый план выставляется изучение компьютерных технологий. Наиболее устоявшимися посылками в определении предмета информатики в настоящее время являются указания на изучение информационных процессов (т.е. сбора, хранения, обработки, передачи данных) с применением компьютерных технологий. При таком подходе наиболее точным, по нашему мнению, является следующее определение: Информатика — это наука, изучающая: - методы реализации информационных процессов средствами вычислительной техники (СВТ); -состав, структуру, общие принципы функционирования СВТ; - принципы управления СВТ. . Из определения следует, что информатика — прикладная наука, использующая научные достижения многих наук. Кроме того, информатика — практическая наука, которая не только занимается описательным изучением перечисленных вопросов, но и во многих случаях предлагает способы их решения. В этом смысле информатика технологична и часто смыкается с информационными технологиями. Методы реализации информационных процессов находятся на стыке информатики с теорией информации, статистикой, теорией кодирования, математической логикой, документоведением и т.д. В этом разделе изучаются вопросы: • представление различных типов данных (числа, символы, текст, • форматы представления данных (предполагается, что одни и те • теоретические проблемы сжатия данных; • структуры данных, т.е. способы хранения с целью удобного доступа к данным. В изучении состава, структуры, принципов функционирования средств вычислительной техники используются научные положения из электроники, автоматики, кибернетики. В целом этот раздел информатики известен как аппаратное обеспечение (АО) информационных процессов. В этом разделе изучаются: • основы построения элементов цифровых устройств; • основные принципы функционирования цифровых вычисли • архитектура СВТ — основные принципы функционирования • приборы и аппараты, составляющие аппаратную конфигурацию • приборы и аппараты, составляющие аппаратную конфигурацию В разработке методов управления средствами вычислительной ^техники (а средствами цифровой вычислительной техники управляют программы, указывающие последовательность действий, которые должно выполнить СВТ) используют научные положения из теории алгоритмов, логики, теории графов, лингвистики, теории игр. Этот раздел информатики известен как программное обеспечение (ПО) СВТ. В этом разделе изучаются: • средства взаимодействия аппаратного и программного обеспечения; • средства взаимодействия человека с аппаратным и программным • программное обеспечение СВТ (ПО).
Обобщая сказанное, можно предложить следующую структурную схему (рис. 1.2):
Рис. 1.2. Структура информатики В настоящей главе будут подробно рассмотрены некоторые проблемы представления данных различных типов: числовых, символьных, звуковых, графических. Также будут рассмотрены некоторые структуры, позволяющие хранить данные с возможностью удобного доступа к ним. Вторая глава посвящена аппаратному обеспечению информационных процессов. В ней рассматриваются вопросы синтеза цифровых устройств, устройство электронно-вычислительных машин, устройство отдельных элементов аппаратного обеспечения. Третья составляющая информатики — программное обеспечение - неоднородна и имеет сложную структуру, включающую несколько уровней: системный,. служебный, инструментальный, прикладной. На низшем уровне находятся комплексы программ, осуществляющих интерфейсные функции, (посреднические между человеком и компьютером, аппаратным и программным обеспечением, между одновременно работающими программами), т.е. распределения различных ресурсов компьютера. Программы этого уровня называются системными. Любые пользовательские программы запускаются под управлением системных программ, называемых операционными системами. Следующий уровень — это служебное программное обеспечение. Программы этого уровня называются утилитами, выполняют различные вспомогательные функции. Это могут быть ремонтные или диагностические программы, используемые при обслуживании различных устройств (гибкого и жесткого диска), тестовые программы, представляющие комплекс программ технического обслуживания, архиваторы, антивирусы и т.п. Служебные программы, как правило, работают под управлением операционной системы (хотя могут и непосредственно обращаться к аппаратному обеспечению), поэтому они рассматриваются как более высокий уровень. В некоторых классификациях системный и служебный уровни объединяются в один класс - системного программного обеспечения (см. главу 3). Инструментальное программное обеспечение представляет комплекс программ для создания других программ. Процесс создания новых программ на языке машинных команд очень сложен и кропотлив, поэтому он низкопроизводителен. На практике большинство программ составляется на формальных языках программирования, которые более близки к математическому, следовательно, проще и производительней в работе, а перевод программ на язык машинных кодов осуществляет компьютер посредством инструментального программного обеспечения. Программы инструментального программного обеспечения управляются системными программами, поэтому они относятся к более высокому уровню. Прикладное программное обеспечение — самый большой по объему класс программ, это программы конечного пользователя. В четвертой главе будет дано подробное описание и классификация программ, входящих в этот класс. Пока же скажем, что в мире существует около шести тысяч различных профессий, тысячи различных увлечения и большинство из них в настоящее время имеет какие-либо свои прикладные программные продукты. Прикладное программное обеспечение также управляется системными программами, и имеет более высокий уровень. Обобщая сказанное, можно предложить следующую структуру программного обеспечения (рис. 1,3).
Рис.1.3. Классификация программного обеспечения Предложенная классификация программного обеспечения является в большой мере условной, так как в настоящее время программные продукты многих фирм стали объединять в себе программные элементы из разных классов. Например, операционная система Windows, являясь комплексом системных программ, в своем составе содержит блок служебных программ (дефрагментация, проверка, очистка диска и др.), а также текстовый процессор WorldPad, графический редактор Paint, которые принадлежат классу прикладных программ.
1.3. Представление (кодирование) данных Чтобы работать с данными различных видов, необходимо унифицировать форму их представления, а это можно сделать с помощью кодирования. Кодированием мы занимаемся довольно часто, например, человек мыслит весьма расплывчатыми понятиями, и, чтобы донести мысль от одного человека к другому, применяется язык. Язык - это система кодирования понятий, Чтобы записать слова языка, применяется опять же кодирование — азбука. Проблемами универсального кодирования занимаются различные области науки, техники, культуры. Вспомним, что чертежи, ноты, математические выкладки являются тоже некоторым кодированием различных информационных объектов. Аналогично, универсальная система кодирования требуется для того, чтобы большое количество различных видов информации можно было бы обработать на компьютере. Подготовка данных для обработки на компьютере (представление данных) в информатике имеет свою специфику, связанную с электроникой. Например, мы хотим проводить расчеты на компьютере. При этом нам придется закодировать цифры, которыми записаны числа. На первый взгляд, представляется вполне естественным кодировать цифру ноль состоянием электронной схемы, где напряжение на некотором элементе будет равно 0 вольт, цифру единица — I вольт, двойку — 2 вольт и т.д., девятку — 9 вольт. Для записи каждого разряда числа в этом случае потребуется элемент электронной схемы, имеющий десять состояний. Однако элементная база электронных схем имеет разброс параметров, что может привести к появлению напряжения, скажем, 3,5 вольт, а оно может быть истолковано и как тройка и как четверка, т.е. потребуется на уровне электронных схем объяснить компьютеру, где заканчивается тройка, а где начинается четверка. Кроме' того, придется создавать весьма непростые электронные элементы для производства арифметических операций с числами, т.е. на схемном уровне должны быть созданы таблица умножения - 10x10 = 100 схем и таблица сложения - тоже 100 схем. Для электроники 40-х гг. (время, когда появились первые вычислительные машины) это была непосильная задача. Еще сложнее выглядела бы задача обработки текстов, ведь русский алфавит содержит 33 буквы. Очевидно, такой путь построения вычислительных систем не состоятелен. В то же время' весьма просто реализовались электронные схемы с двумя устойчивыми состояниями: есть ток — 1, нет тока — О, есть электрическое (магнитное) поле — 1, нет — 0. Взгляды создателей вычислительной техники были обращены на двоичное кодирование как универсальную форму представления данных для дальнейшей обработки их средствами вычислительной техники. Предполагается, что данные располагаются в некоторых ячейках, представляющих упорядоченную совокупность из двоичных разрядов, а каждый может временно содержать одно из состояний — 0 или 1. Тогда группа из двух двоичных разрядов (двух бит) может закодировать 22= 4 различные комбинации кодов (00 01 10 11); аналогично, три бита дадут 23 = 8 комбинаций, восемь бит или 1 байт — 2я = 256 и т.д. Итак, внутренняя азбука компьютера очень бедна, содержит всего два символа: О, 1 поэтому и возникает проблема представления всего многообразия типов данных — чисел, текстов, звуков, графических изображений, видео и др., только этими двумя символами, с целью дальнейшей обработки средствами вычислительной техники. Вопросы представления некоторых типов данных мы рассмотрим в последующих параграфах. 1.3.1. Представление чисел в двоичном коде Существуют различные способы записи чисел, например: можно записать число в виде текста — сто двадцать три; римской системе счисления CXXIII; арабской - 123.
Системы счисления Совокупность приемов записи и наименования чисел называется системой счисления. Числа записываются с помощью символов, и по количеству символов, используемых для записи числа, системы счисления подразделяются на позиционные и непозиционные. Если для записи числа используется бесконечное множество символов, то система счисления называется непозиционной. Примером непозиционной системы счисления может служить римская. Например, для записи числа один используется буква I, два и три выглядят как совокупности символов II, III, но для записи числа пять выбирается новый символ V, шесть — VI, десять — вводится символ X, сто — С, тысяча — М и т.д. Бесконечный ряд чисел потребует бесконечного числа символов для записи чисел. Кроме того, такой способ записи чисел приводит к очень сложным правилам арифметики. Позиционные системы счисления для записи чисел используют ограниченный набор символов, называемых цифрами, и величина числа зависит не только от набора цифр, но и от того, в какой последовательности записаны цифры, т.е. от позиции, занимаемой цифрой, например, 125 и 215. Количество цифр, используемых для записи числа, называется основанием системы счисления, в дальнейшем его обозначим q. В повседневной жизни мы пользуемся десятичной позиционной системой счисления, q = 10, т.е. используется 10 цифр: 0123456 7 8 9. Рассмотрим правила записи чисел в позиционной десятичной системе счисления. Числа от 0 до 9 записываются цифрами, для записи следующего числа цифры не существует, поэтому вместо 9 пишут 0, но левее нуля образуется еще один разряд, называемый старшим, где записывается (прибавляется) 1, в результате получается 10. Затем пойдут числа 11, 12, но на 19 опять младший разряд заполнится и мы его снова заменим на 0, а старший разряд увеличим на 1, получим 20. Далее по аналогии 30, 40... 90, 91, 92... до 99. Здесь заполненными оказываются два разряда сразу; чтобы получить следующее число, мы заменяем оба на 0, а в старшем разряде, теперь уже третьем, поставим 1, т.е. 100, и т.д. до бесконечности, причем заметим, что при конечном числе цифр можно записать любое сколь угодно большое число. Заметим также, что производство арифметических действий в десятичной системе счисления весьма просто. Число в позиционной системе счисления с основанием q может быть представлено в виде полинома по степеням q. Например, в десятичной системе мы имеем число а в общем виде это правило запишется так: Здесь X(q) - запись числа в системе счисления с основанием q; х(i). - натуральные числа меньше q, т.е. цифры; n— число разрядов целой части; m - число разрядов дробной части. Записывая слева направо цифры числа, мы получим закодированную запись числа в q-ичной системе счисления: В информатике, вследствие применения электронных средств вычислительной техники, большое значение имеет двоичная система счисления, q = 2. На ранних этапах развития вычислительной техники арифметические операции с действительными числами производились в двоичной системе ввиду простоты их реализации в электронных схемах вычислительных Машин. Например, таблица сложения и таблица умножения будут иметь по четыре правила:
А значит, для реализации поразрядной арифметики в компьютере потребуются вместо двух таблиц по сто правил в десятичной системе счисления две таблицы по четыре правила в двоичной. Соответственно на аппаратном уровне вместо двухсот электронных схем — Но запись числа в двоичной системе счисления длиннее записи того же числа в десятичной системе счисления в log2 10 раз (примерно в 3,3 раза). Это громоздко и не удобно для использования, так как нормальный объем человеческого внимания составляет примерно три-четыре объекта, т.е. удобно будет пользоваться такими системами счисления, в которых наиболее часто используемые числа (от единиц до тысяч) записывались бы одной-четырьмя цифрами. Как это будет показано далее, перевод числа, записанного в двоичной системе счисления, в восьмеричную и шестнадцатеричную очень сильно упрощается по сравнению с переводом из десятичной в двоичную. Запись же чисел в них в три раза короче для восьмеричной и в четыре для шестнадцатеричной системы, чем в двоичной, но длины чисел в десятичной, восьмеричной и шестнадцатеричной системах счисления будут различаться ненамного. Поэтому, наряду с двоичной системой счисления, в информатике имеют хождение восьмеричная и шестнадцатеричная системы счисления. Восьмеричная система счисления имеет восемь цифр: 01234 567. Шестнадцатеричная - шестнадцать, причем первые 10 цифр совпадают по написанию с цифрами десятичной системы счисления, а для обозначения оставшихся шести цифр применяются большие латинские буквы, т.е. для шестнадцатеричной системы счисления получим набор цифр: 0123456789АВСОЕЕ Если из контекста не ясно, к какой системе счисления относится запись, то основание системы записывается после числа в виде нижнего индекса. Например, одно и то же число 231, записанное в десятичной системе, запишется в двоичной, восьмеричной и шестнадцатеричной системах счисления следующим образом: 231(10)=11100111(2)=347(8)=Е7(16). Запишем начало натурального ряда в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.
Преобразование чисел из одной системы счисления в другую Так как десятичная система для нас удобна и привычна, все арифметические действия мы делаем в ней, и преобразование чисел из произвольной недесятичной (q не равно 10) системы в десятичную удобно выполнять на основе разложения по степеням q, например:
Преобразование из десятичной в прочие системы счисления проводится с помощью правил умножения и деления. При этом целая и дробная части переводятся отдельно. Рассмотрим алгоритм на примере перевода д
|