Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение Редлиха-Квонга





 

Уравнение Редлиха-Квонга [17, 18] имеет вид:

(1.15)

где P — давление, Па;

T — абсолютная температура, К;

V — мольный объём, м³/моль;

— универсальная газовая постоянная, Дж/(моль·К);

a и b - некоторые константы, зависящие от конкретного вещества.

Уравнение состояния Редлиха-Квонга значительно проще большинства известных уравнений. Точность данного уравнения в целом соответствует точности определения состава и свойств остатка пластовых смесей [19].

Первоначально уравнение состояния Редлиха-Квонга использовали для определения термодинамических и физических свойств газовых смесей. Применение этого уравнения для расчета свойств жидких углеводородных смесей приводит к большим погрешностям [20].

В практике расчета равновесий широкую известность получилиуравнения состояния Редлиха-Квонга, Соаве, Пенга-Робинсона, Бенедикта-Вебба-Рубина, позволяющие рассчитывать равновесие жидкость-пар в однокомпонентных, бинарных и многокомпонентных системах в весьма широком интервале внешних условий. Смеси неполярных веществ обычно с удовлетворительной точностью описывают только на основе данных о чистых компонентах. Параметры уравнений для смесей при этом находят с помощью определенных комбинационных правил на основе констант, характеризующих индивидуальные вещества. В более сложных случаях необходима оценка некоторых бинарных параметров по экспериментальным данным для смесей [21].

Летучесть компонента смеси в газовой фазе рассчитывают по уравнению состояния Редлиха-Квонга, а коэффициент активности по выражению из теории регулярных растворов Гильденбранта. В это выражение входят молярный объем компонента в жидком состоянии и параметр растворимости, который вычисляют по энтальпии испарения компонента смеси [22].

Метод Чао и Сидера рекомендуется использовать в расчетах процессов стабилизации и дебутанизации насыщенного конденсата, а также сепарации природных газоконденсатных смесей при давлениях примерно до 10 МПа и температуре не ниже 263 К - чтобы расширить пределы применимости этого метода, предпринимались попытки его модификации, основанные на использовании различных модификаций уравнения состояния Редлиха-Квонга и теории жидких растворов.

Робинсон и Чао коэффициент летучести компонента в газовой фазе вычисляют поуравнению состояния Редлиха-Квонга с использованием обобщенных коэффициентов Чу и Прауснитца. Для определения летучести чистого вещества подобраны эмпирические выражения, отличающиеся от выражений Чао, Сидера и Шелтона. Коэффициент активности рассчитывают с помощью уравнения Гильдебранта и Скотта, учитывающего отклонение поведения жидких растворов от поведения регулярных растворов.

Особенно эффективной оказалось модификация, предложенная Соаве, которая часто дает хорошие результаты при расчетах равновесия пар-жидкость в углеводородных смесях. Это объясняется, по крайней мере частично, использованием для определения констант уравнения данных по давлениям паров чистых компонентов. В результате уравнение Соаве, надежное почти всегда при расчете констант равновесия К, обычно дает неправильные значения плотности жидкости [23].

В заключение следует отметить, что, несмотря на простоту, осуществленная Соаве модификация уравнения Редлиха-Квонга явилась очень эффективной и позволила улучшить моделирование свойств не только паровой (газовой) фазы, но и газированной жидкой фазы. И все же, свойства паровой фазы моделируются модификациями уравнения состояния Редлиха-Квонга значительно более точно, чем свойства жидкой фазы. Для точного описания фазового равновесия необходимо правильно определять свойства обеих сосуществующих фаз.

 







Дата добавления: 2015-12-04; просмотров: 399. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия