Введение. S: При лечении абсцедирующей пневмонии не используются
Введение В настоящее время системы электропривода (ЭП) прочно занимают лидирующее место среди приводных устройств и обеспечивают бесперебойную и надёжную работу механизмов во многих областях техники и жизнедеятельности человека. Функциональные возможности и эксплуатационные параметры современных ЭП во многом определяются характеристиками применяемых систем управления. В качестве приводного двигателя в последнее время наибольшее распространение находит асинхронный двигатель (АД) с короткозамкнутым ротором. Современный асинхронный ЭП реализован на базе силовой полупроводниковой техники с применением микропроцессорного управления. Его возможности позволяют организовать регулирование выходных координат ЭП в широком диапазоне, с высоким быстродействием и большой точностью. В настоящее время развитие систем асинхронного ЭП с микропроцессорным управлением позволяет путём создания новых программных алгоритмов синтезировать ЭП с широки набором эксплуатационных характеристик, что в свою очередь позволяет удовлетворить требования, накладываемые со стороны самых разных технологических объектов. Электропривод подъемно-транспортных механизмов (ПТМ) в общем случае представляет собой сложный мехатронный модуль, объединяющий в своём составе систему управления, силовой преобразователь, асинхронный без редукторный двигатель с короткозамкнутым ротором. В качестве силового преобразователя может использоваться преобразователь частоты (ПЧ) или тиристорный регулятор напряжения (ТРН). Система управления обеспечивает требуемые режимы эксплуатации подъемно-транспортных механизмов, адекватную реакцию ЭП на изменение внешних условий, поддержку защитных функций и коммуникаций с другими устройствами. Системы ПТМ широко применяются в технологических процессах при перевозке людей и транспортировке грузов. Сбой и нарушение работы ПТМ может привести к гибели людей и тяжёлым экономическим последствиям. В случае превышения допустимого момента, не будут выполняться требования для перевозки людей, может быть нанесен вред здоровью. Если ПТМ не развивают требуемого момента, возможна ситуация застревания кабины лифта или подъёмной клети между требуемыми точками останова, что также рассматривается как аварийная ситуация. При серийном производстве систем ПТМ на этапе экспериментальной проверки показателей функционирования возникает задача проведения сложных нагрузочных испытаний. В данном режиме выполняется проверка ПТМ на соответствие требованиям по ограничению и формированию выходного момента. При этом испытательное нагрузочное устройство должно имитировать диаграмму эксплуатационных усилий, прикладываемых со стороны элементов ПТМ различных типов. Для создания нагрузочного усилия самым простым решением является применение механического тормозного устройства в виде барабана и колодок. К основным недостаткам следует отнести сложность стабилизации тормозного момента, шум, повышенную вибрацию и т.д. Кроме того, при использовании нагрузочного испытательного оборудования данной конструкции точность результатов испытаний во многом определяется навыками и опытом оператора, который вручную управляет тормозным механизмом. Нагрузочное усилие можно получить применением генераторов и двигателей постоянного тока с различными типами силовых преобразователей и систем управления. Изобретение относится к области электротехники и может быть использовано в тяговых электродвигателях электроподвижного состава. Технический результат заключается в повышении энергетических показателей за счет повышения значения коэффициента мощности путем улучшения формы сетевого тока и приближения его фазы к сетевому напряжению при существенном снижении энергопотребления. На фоне известных недостатков коллекторных машин постоянного тока с интересом рассматривается идея об использовании в качестве испытательного нагрузочного устройства асинхронного ЭП на базе ПЧ с векторным управлением. Целью данной работы является разработка системы управления нагрузочным асинхронным ЭП испытательного стенда для проверки ПТМ с возможностью имитации нагрузочных усилий со стороны элементов ПТМ различных типов. Для достижения поставленной задачи необходимо решить следующие задачи: 1. Проанализировать особенности режимов работы подъемно-транспортных механизмов и выделить требования к нагрузочному моментному ЭП испытательного стенда. 2. Разработать математическое описание и динамические имитационные модели компонентов нагрузочного асинхронного ЭП и элементов подъемно-транспортных механизмов. 3.Разработатьметодикуопределенияструктурыипараметровдлясистемы управления нагрузочным асинхронным ЭП испытательного стенда. 4.Реализоватьмикропроцессорноеуправлениенагрузочнымасинхронным ЭП испытательного стенда и провести экспериментальное исследование его работоспособности. Перечисленные в данной работе задачи будут решаться методами теории электрических машин, теории автоматического управления, численного моделирования и экспериментальных исследований в лабораторных условиях.
|