Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

БИЛЕТ №17





1. Математические модели сложных измерительных сигналов.

В средствах измерений используется большое число измерительных сигналов, имеющих самые разнообразные формы. Рассмотрим некоторые из них, наиболее часто встречающиеся на практике.
Прямоугольные импульсы. Одиночный идеальный прямоугольный импульс (рис. 10.7,а) описывается уравнением

т.е. он формируется как разность двух единичных функций, сдвинутых во времени на величину т — длительность импульса.

Рис. 10.7. Формирование идеального прямоугольного импульса (а),
последовательность прямоугольных импульсов (б) и трапецеидальный импульс (в)
Последовательность прямоугольных импульсов есть сумма одиночных импульсов:

Для ее описания необходимо знать три параметра: амплитуду Ym, длительность Т и период Т (рис. 10.7, б). Отношение периода к длительности прямоугольного импульса называется скважностью, а обратная величина — коэффициентом заполнения. При скважности, равной двум, последовательность импульсов называют меандром (см. рис. 10.7, б).
Идеальные прямоугольные импульсы в природе не встречаются. В реальных импульсах время изменения сигнала от нулевых до амплитудных значений (и обратно) всегда имеет конечную длительность, т.е. фронт Тф и спад Тс (рис. 10.7, в). Следовательно, у реальных импульсов будет трапецеидальная форма.
Трапецеидальный импульс также является идеализации реальных импульсов, которые имеют гораздо более сложную форму. Она отличается от трапеции спадом вершины импульса, выбросами на вершине и в паузе и другими особенностями, учтенными в системе параметров реального прямоугольного импульса по ГОСТ 16465-70.
Сигналы с линейными участками. При построении средств измерительной техники широкое применение находят периодические сигналы с линейными участками. Это прежде всего линейный знакопеременный и однополярный линейно изменяющийся (пилообразный) сигналы (рис. 10.8). Линейный знакопеременный сигнал описывается уравнением

Пилообразный сигнал


Рис. 10.8. Линейный знакопеременный (а) и однополярный линейно изменяющийся (пилообразный) (б) сигналы

Модулированные сигналы. Модулированным называется сигнал, являющийся результатом взаимодействия двух или более сигналов, т.е. модуляции. Модуляция — это воздействие измерительного сигнала X(t) на какой-либо параметр стационарного сигнала Y(t), обладающего такими физической природой и характером изменения во времени, при которых удобны его дальнейшие преобразования и передача. В качестве стационарного сигнала, именуемого несущим, обычно выбирают синусоидальное (гармоническое) колебание
(10.7)
или последовательность импульсов.
Физический процесс, обратный модуляции, называется демодуляцией, или детектированием, и заключается в получении из модулированного сигнала другого сигнала, пропорционального модулирующему. Задача демодуляции — по возможности полное восстановление информации, содержащейся в модулирующем сигнале X(t).
Вид модуляции и способ детектирования зависят от требований, предъявляемых к точности передачи информации. Наиболее простым модулированным гармоническим сигналом является амплитудно-модулированный сигнал, в котором измерительная информация содержится в амплитуде несущего синусоидального сигнала (рис. 10.9).

Рис. 10.9. Амплитудно-модулированный (1) и модулирующий (2) сигналы
Амплитудно-модулированные сигналы описываются формулой
(10.8)
где m — глубина амплитудной модуляции (всегда меньше единицы). При частотной модуляции (рис. 10.10) измерительная информация содержится в частоте модулированного сигнала, т.е.

где Dw — наибольшее изменение частоты модулированного сигнала, т.е. девиация частоты, пропорциональная амплитуде модулирующего сигнала.
При фазовой модуляции (рис. 10.11) модулирующий сигнал X(t) воздействует на фазу несущего колебания:

где mф — коэффициент фазовой модуляции.

Рис. 10.10. Частотно-модулированный (1) и модулирующий (2) сигналы
Для того чтобы при детектировании можно было восстановить модулирующий сигнал, необходимо иметь сигнал вида (10.7), называемый опорным. Относительно него наблюдают, как меняется фаза модулированного сигнала. Модулирующий, модулированный и опорный сигналы показаны на рис. 10.11.

Рис. 10.11. Модулирующий (1), фазомодулированный (2) и опорный (3) сигналы
Если модулируемым сигналом является периодическая последовательность прямоугольных импульсов, уо возможны три вида модуляции (рис. 10.12):
• амплитудно-импульсная (АИМ);
• частотно-импульсная (ЧИМ);
• широтно-импульсная (ШИМ).

Рис. 10.12. Несущая последовательность прямоугольных импульсов (а), модулирующий (б), амплитудно-модулированный (в), частотно-модулированный (г) и широтно-модулированный (д) сигналы
При этом параметром, несущим измерительную информацию, соответственно являются амплитуда, частота и длительность импульсов.







Дата добавления: 2015-12-04; просмотров: 262. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия