Студопедия — Расчет измерительных каналов средств измерений.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет измерительных каналов средств измерений.






Хотя СИ чрезвычайно разнообразны и применяются для измерения самых разных физических величин, назначение у них одно — проведение измерений, поэтому они имеют общую теорию построения. Основными задачами этой теории являются:

• Определение математической модели (ММ) измерительного канала (или цепи) СИ. Модель строится на основе моделей составляющих его структурных элементов. Основной характеристикой, определяемой в процессе моделирования, является уравнение преобразования. При необходимости может рассчитываться одна из полных динамических характеристик СИ, описывающих взаимосвязь его входной и выходной величин в динамических режимах работы. Важно отметить, что часто говорят о ММ средства измерений, подразумевая при этом модель его измерительного канала.

• Расчет метрологических характеристик СИ по метрологическим характеристикам составляющих блоков. При этом могут определяться любые характеристики, однако чаще всего рассчитывается основная погрешность СИ.

Решение второй задачи невозможно без знания математической модели средства измерений, т.е. без решения первой задачи. В общем случае последовательность действий, выполняемых при решении этих задач, состоит в следующем:

1. Разрабатывается структурная схема СИ. Это осуществляется с целью решения поставленной измерительной задачи в соответствии с выбранными принципами и методами измерения на основе имеющейся априорной информации. Важно отметить, что на этом этапе строится идеализированная структурная схема, т.е. схема, в которой не учитываются источники помех и неидеальности составляющих ее элементов. Все это будет учитываться по мере необходимости на последующих этапах расчета. Примером такой схемы является структурная схема термоэлектрического термометра, приведенная на рис. 11.21.

При разработке структурной схемы СИ полезно, а порой и просто необходимо использовать диаграммы, отражающие изменения измерительных сигналов во времени или по частоте. Они существенно облегчают понимание процессов функционирования СИ, особенно цифровых.

В целом ряде случаев перед началом разработки структурной схемы бывает известно уравнение, на основе которого определяется измеряемая величина, например при измерении активной электрической мощности. Данные уравнения фактически являются прообразом, основой ММ измерительного канала СИ, и с их помощью разрабатываются структурные схемы.

2. Производится оценка диапазонов изменения информативных и неинформативных параметров входных и выходных сигналов структурных элементов и СИ в целом. При необходимости могут быть оценены диапазоны изменения влияющих величин. Оценка осуществляется на основе априорной информации об измеряемой величине и условиях измерения.

3. С использованием полученной информации о диапазонах изменения входных и выходных сигналов оцениваются возможности технической реализации структурных элементов и строятся их ММ. При построении моделей должна активно использоваться информация, полученная прикладными техническими науками.

4. Выполняется построение математический модели СИ. При этом используются его структурная схема, ММ составляющих ее элементов, временные и (или) частотные диаграммы измерительных сигналов. Для тех СИ, структурные схемы которых разрабатывались на основе известных уравнений связи измеряемой величины и величин, непосредственно воздействующих на входы приборов, ММ является дальнейшим развитием и уточнением этих уравнений.

Модель представляет собой функцию преобразования СИ, связывающую между собой его входной и выходной сигналы. В качестве независимого аргумента модели может использоваться время или частота изменения измерительных сигналов. Модель измерительного канала СИ может быть описана математической функцией, непрерывной во времени и по размеру. Это характерно для аналоговых СИ. Примером такой ММ является уравнение (11.9), выведенное по структурной схеме, приведенной на рис. 11.21. При моделировании цифровых приборов модель, как правило, является решетчатой функцией, т.е. функцией, дискретной по времени и квантованной по размеру.

5. На основе анализа полученной ММ выделяются элементы структурной схемы, параметры которых в нее входят. Следует помнить, что параметры некоторых структурных элементов измерительного канала могут и не входить в уравнение преобразования. Это прежде всего касается элементов, стоящих в цепи прямого преобразования СИ, реализующих схему уравновешивающего преобразования.

Метрологические характеристики элементов, параметры которых входят в ММ, стараются по возможности определить. К определяемым характеристикам относятся уравнения преобразования, границы, в которых находится систематическая погрешность, дифференциальная функция распределения вероятности случайной составляющей погрешности или ее математическое ожидание и среднее квадратическое отклонение.

6. На этом этапе рассчитывается погрешность СИ по методике обработки результатов косвенных измерений (см. разд. 8.3), а также другие требуемые его метрологические характеристики. При расчете основной погрешности функция преобразования СИ рассматривается как уравнение для определения результатов косвенных измерений, а входящие в него величины — как результаты прямых измерений. Для проведения такого расчета необходимо знать систематические и случайные погрешности каждого из параметров структурных элементов, которые входят в модель измерительного канала СИ.

Расчет погрешностей — наиболее сложная часть расчета СИ, существенно зависящая от количества информации о погрешностях блоков и их характеристиках. Как было показано в 11.7.2 и 11.7.3, погрешность СИ состоит из двух составляющих — аддитивной и мультипликативной. Рассмотрим их „подробнее.

Пусть уравнение преобразования СИ имеет вид у = F(x, aj, zi), где х, у — информативные параметры входного и выходного сигналов; zi = (z1, z2,..., zk) — влияющие факторы (помехи, наводки, шумы), являющиеся причинами аддитивной погрешности; aj= (a1, a2,..., aL) — параметры блоков СИ.

Каждый параметр аjимеет номинальное значение, при котором вносимая данным блоком погрешность равна нулю. Отклонения реальных свойств элементов от номинальных приводят к возникновению погрешности. Эти отклонения можно условно назвать погрешностями блоков и выразить в виде

где аjд — действительное значение параметра блока, аj — его номинальное значение.

Согласно методике обработки результатов косвенных измерений, погрешность, вносимая j-м блоком в результат измерения у,

Коэффициент влияния погрешности j-ro блока в относительной форме

На практике часто уравнение преобразования имеет вид

где Sj — положительные и отрицательные натуральные числа. В этом случае коэффициент влияния j-ro блока Vj = Sj.

Коэффициенты влияния для аддитивных погрешностей нельзя выразить в виде отклонения от каких-либо номинальных значений. Поэтому они выражаются в обычной форме: Wi = ¶F/¶zi.

Абсолютная погрешность средства измерений при показании у равна сумме мультипликативной и аддитивной составляющих:

(11.12)

В данном уравнении все погрешности приведены к выходу СИ.

При расчете погрешность оценивается в требуемых точках интервала показаний. Если же известна точка, где погрешность максимальна, то в некоторых случаях можно ограничиться расчетом погрешности для этой точки. Такой точкой в большинстве случаев является конечное значение диапазона показаний ук, поскольку при этом максимальны мультипликативные составляющие погрешности СИ. Относительная погрешность СИ в этой точке

(11.13)

Все погрешности, входящие в правые части формул (11.12) и (11.13), подразделяются на систематические и случайные. Сумма слагаемых, описывающих систематические составляющие, дает систематическую погрешность СИ, а сумма случайных — случайную погрешность. При суммировании последних необходимо учитывать корреляционные связи. С целью упрощения суммирования целесообразно применять критерий ничтожно малой погрешности. Общие правила суммирования погрешностей рассмотрены в гл. 9.

Дальнейшие действия при расчете погрешностей по формулам (11.12) и (11.13) существенно зависят от того, какая информация о погрешностях структурных элементов средства измерений и влияющих факторах имеется в наличии.

Для расчета предельной случайной погрешности при заданной доверительной вероятности Р необходимо знать закон ее распределения. Как показано выше, случайная погрешность СИ определяется суммой случайных погрешностей его блоков, имеющих различные законы распределения. Следовательно, суммарный закон распределения должен определяться как композиция законов распределения ее составляющих. Здесь подчас возникает масса непреодолимых трудностей. Во-первых, законы распределения составляющих, как правило, неизвестны, поскольку для их определения необходимо проводить трудоемкие исследования. Во-вторых, определение композиции законов распределения нескольких слагаемых является весьма трудной математической задачей. В связи с этим часто предполагают, что суммарная случайная погрешность СИ имеет нормальное распределение.

За предельную оценку случайной составляющей погрешности СИ может быть принята величина e(Р) = zpSS, где zp— квантильный множитель, соответствующий доверительной вероятности Р; SS — оценка СКО суммарной случайной погрешности. Для практики целесообразно использовать значение Р = 0,95. Если число слагаемых невелико, то вместо квантильного множителя zp должен использоваться коэффициент Стьюдента tp. В общем случае значение СКО суммарной случайной погрешности СИ должно рассчитываться по известным правилам (см. разд. 8.3 и 9.3).

Систематические составляющие погрешности СИ определяются в результате детального анализа процессов, протекающих в каждом из блоков, и, как правило, выражаются допустимыми границами. Считается, что они имеют равномерное распределение. В этом случае суммарную систематическая погрешность

где k — коэффициент, определяемый по табл. 8.4 или 8.5; qj, zci — пределы допускаемых систематических погрешностей блоков, образующих мультипликативную и аддитивную составляющие погрешности.

Суммарная погрешность СИ определится по правилам суммирования составляющих, приведенных в разд. 8.3. В общем случае Dк = kP[qk + e(Р)]. При перечисленных в табл. 8.6 условиях одной из составляющих можно пренебрегать. Коэффициентkp определяется по табл. 8.7.

На практике погрешности блоков СИ часто задаются допускаемыми границами dri и zri, включающими как систематическую так и случайную составляющие. В этом случае суммарные погрешности блоков целесообразно рассматривать как погрешности, имеющие равномерные распределения в заданных границах, и складывать их статистически. Суммарная погрешность СИ

(11.14)

Вычисления погрешностей проводятся для ряда показаний СИ из возможного диапазона измерений. При этом необходимо сохранять неизменной доверительную вероятность, принятую при проведении расчетов. Значения у, при которых производится расчет погрешностей, определяются исходя из следующих соображений. В пределах диапазона изменения измеряемой величины не более десятикратного изменение результирующей погрешности может быть с достаточной степенью точности представлено прямой линией или простейшей кривой. Это позволит описать результирующую погрешность линейной или простейшей нелинейной двузвенной формулой. Если изменение измеряемой величины превышает десятикратное, то весь диапазон разбивается на участки, где и определяются крайние погрешности. Значение аддитивной составляющей характеризует результирующую погрешность в начале диапазона, а сумма значений аддитивной и мультипликативной составляющих в конце диапазона описывает результирующую погрешность в конце диапазона. Если участков несколько, то суммирование проводится на всех участках, а затем принимается решение 6 методе описания результирующей погрешности.

7. Производится расчет измерительного канала СИ, уточняется его структурная схема. Это делается при необходимости более полного учета факторов, влияющих на метрологические характеристики средства измерений. Уточнение структурной схемы осуществляется путем введения в нее источников шумов, дрейфов, наводок и т.п. Кроме того, учетиваютсянеидеальности структурных элементов.

8. На основании проведенного уточнения схемы СИ производится корректировка его ММ или, если это необходимо, построение новой модели.

9. По уточненной модели СИ производится расчет его основной погрешности и необходимых метрологических характеристик.

Приведенный порядок действий может меняться в зависимости от вида СИ. Чем точнее рассчитываемое СИ, тем более сложным будет построение его модели и расчет метрологических характеристик. Значительные сложности могут иметь место при расчете измерительных каналов цифровых СИ, поскольку приходится моделировать процессы дискретизации во времени и квантования по уровню.

 

БИЛЕТ №18 1. Принципы выбора и нормирования метрологических характеристик средств измерений. Средство измерений (СИ) – это техническое средство, используемое при измерениях и имеющее нормированные метрологические характеристики. Именно нормированние метрологических характеристик отличает средство измерения от других технических средств.Для каждого вида средств измерений, исходя из их специфики и назначения, нормируют вполне определенный комплекс метрологических характеристик. В этот комплекс должны входить такие характеристики, которые позволяют определить погрешность данного средства измерения, в известных рабочих условиях его применения. Метрологические свойства средств измерения – это свойства, оказывающие непосредственное влияние на результаты проводимых этими средствами измерений и на погрешность этих измерений.

Количественно—метрологические свойства характеризуются показателями метрологических свойств, которые являются их метрологическими характеристиками.

Утвержденные НД метрологические характеристики являются нормируемыми метрологическими характеристиками Метрологические свойства средств измерения подразделяются на:

1) свойства, устанавливающие сферу применения средств измерения:

2) свойства, определяющие прецизионность и правильность полученных результатов измерения.

Свойства, устанавливающие сферу применения средств измерения, определяются следующими метрологическими характеристиками:

1) диапазоном измерений;

2) порогом чувствительности.

Диапазон измерений – это диапазон значений величины, в котором нормированы предельные значения погрешностей. Нижнюю и верхнюю (правую и левую) границу измерений называют нижним и верхним пределом измерений.

Порог чувствительности – это минимальное значение измеряемой величины, способное стать причиной заметного искажения получаемого сигнала.

Свойства, определяющие прецизионность и правильность полученных результатов измерения, определяются следующими метрологическими характеристиками:

1) правильность результатов;

2) прецизионность результатов.

Точность результатов, полученных некими средствами измерения, определяется их погрешностью.

Погрешность средств измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины. Для рабочего средства измерения настоящим (действительным) значением измеряемой величины считается показание рабочего эталона более низкого разряда. Таким образом, базой сравнения является значение, показанное средством измерения, стоящим выше в поверочной схеме, чем проверяемое средство измерения.

∆Qn =Qn -Q0,

где ∆Qn – погрешность проверяемого средства измерения;

Qn – значение некой величины, полученное с помощью проверяемого средства измерения;

Q0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Нормирование метрологических характеристик – это регламентирование пределов отклонений значений реальных метрологических характеристик средств измерений от их номинальных значений. Главная цель нормирования метрологических характеристик – это обеспечение их взаимозаменяемости и единства измерений. Значения реальных метрологических характеристик устанавливаются в процессе производства средств измерения, в дальнейшем во время эксплуатации средств измерения эти значения должны проверятся. В случае, если одна или несколько нормированных метрологических характеристик выходит из регламентированных пределов, средство измерения должно быть либо немедленно отрегулировано, либо изъято из эксплуатации.

Значения метрологических характеристик регламентируются соответствующими стандартами средств измерения. Причем метрологические характеристики нормируются раздельно для нормальных и рабочих условий применения средств измерения. Нормальные условия применения – это условия, в которых изменениями метрологических характеристик, обусловленными воздействием внешних факторов (внешние магнитные поля, влажность, температура), можно пренебречь. Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон.

 







Дата добавления: 2015-12-04; просмотров: 228. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия