Методические указания. Турбулентный поток характеризуется беспорядочным, хаотичным движением частиц жидкости
Турбулентный поток характеризуется беспорядочным, хаотичным движением частиц жидкости. Из-за сложности явлений до сих пор не создано достаточно удовлетворительной теории турбулентного движения, которая непосредственно вытекала бы из основных уравнений гидродинамики и хорошо подтверждалась опытом (как для ламинарного движения). Поэтому все выводы и расчетные соотношения получены экспериментально и в результате теоретического исследования упрощенных моделей турбулентного течения. Прежде всего следует уяснить механизм турбулентного перемешивания и пульсации скоростей. Далее рассмотрите структуру и физическую природу касательных напряжений, которые определяются как сумма напряжений, вызванных действием сил вязкости и обусловленных турбулентным перемешиванием. Определение последних основано на полуэмпирических теориях Прандтля и Кармана, получивших дальнейшее развитие в трудах советских ученых. Потери на трение по длине определяются по формуле Дарси, которая может быть получена из соображений размерности. Центральным вопросом темы является определение коэффициента гидравлического трения λ. в формуле Дарси. Вобщем случае коэффициент λ, является функцией числа Рейнольдса Re и относительной шероховатости k/d:
Где k – абсолютная шероховатость, d – диаметр трубы. Наиболее полно зависимость (3) раскрывается графиком Никурадзе, который получен экспериментально на трубах с искусственной зернистой равномерной шероховатостью. На графике можно выделить пять зон, каждая из которых характеризуется определенной внутренней структурой потока и в соответствии с этим определенной зависимостью λ от Re и k/d. 1.Зона изменения Re от 0 до 2320. Ламинарный режим потока. Здесь λ= f (Re). По Пуазейлю, 2. Зона изменения Re от 2320 до — 4000. Неустойчивая зона перемежающейся турбулентности, когда на отдельных участках возникают области турбулентного режима, которые разрастаются, а затем исчезают и снова появляются. Изменение структуры потока сопровождается колебаниями величины λ. Зона не рекомендуется для применения в гидравлические системах. 3. Зона чисел Re от - 4000 до—10 d\k. Поток характеризуется турбулентным ядром и пристенным (пограничным) ламинарным слоем, который затапливает шероховатости внутренней поверхности трубы, ввиду чего коэффициент λ не зависит от k\d и зависит только от Re. Здесь трубы работают как „гидравлически гладкие". Для этой зоны, по Блазиусу, 4.Зона, в которой λ = f (Re; k/d). Пределы зоны определяются соотношением 5.Зона больших чисел Как показали более поздние исследования, результаты экспериментов Никурадзе для „гидравлически шероховатых" труб нельзя перенести на трубы с естественной шероховатостью. Оказалось, что в четвертой и пятой зонах общий характер зависимости (3) сохраняется, но вид кривых на графике для различных типов шероховатостей получается различным, т. е. на λ влияет не только величина k\d, но и характер шероховатости стенок труб. Для реальных технических труб с естественной шероховатостью для определения в четвертой зоне может быть рекомендована формула Альтшуля
А для пятой зоны – формула Шифринсона
Здесь kэ — эквивалентная абсолютная шероховатость; т. е. такая величина равномерной зернистой шероховатости Никурадзе, которая при расчетах дает такой же коэффициент λ, как и естественная шероховатость. Отметим, что при малых Re(< 10 d/kэ) формула (6) переходит в формулу (5) для гидравлически гладких труб, а при больших Re(> 500 d/kэ) обращается в формулу (7) для вполне „гидравлически шероховатых" труб. Вместо, расчетных формул (5), (6) и (7) для определения λ можно пользоваться графиком Г. А. Мурина. Литература: [1, с. 95 — 106]; [2, с. 108—127]: [3, с. 74-82]; 14, с. 98—111]; [5, с. 226 — 265]; [6, с. 121 — 130]; [8, с. 37-38].
Вопросы для самопроверки 1. В чем отличие турбулентного течения от ламинарного? 2. Чем отличается распределение скоростей в цилиндрическом трубопроводе при ламинарном и турбулентном режимах движения жидкости? При каком режиме имеет место большая неравномерность скоростей и почему? 3. Объясните понятие „гладкие" и „шероховатые" поверхности. Может ли одна и та же труба быть „гидравлически гладкой" и „гидравлически шероховатой"? В каком случае? 4. Объясните основные линии и зоны сопротивления на графике Никурадзе. .5. Какова зависимость между потерей напора и средней скоростью течения жидкости в различных зонах, и линиях на графике Никурадзе? 6. От каких факторов зависит коэффициент гидравлического трения при турбулентном течении и по каким формулам его можно определять? 7. Каковы особенности расчета потерь. на трение по длине для некруглых трубопроводов?
|