Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра приведения другую точку O1. Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: MO1Z=åMo1z(Fk) (5.11). С другой стороны, имеем MO1Z=MOlz(R), (5.12) так как главный момент для центра приведения О равен нулю (MOz=0). Сравнивая соотношения (5.11) и (5.12), получаем MO1z(R)=åMOlZ(Fk); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R1 приложена в какой-либо точке О1 с координатами х и у (рис. 5.5) и известны главный вектор Fo и главный момент МОя при центре приведения в начале координат. Так как R1=Fo, то составляющие равнодействующей по осям х и у равны Rlx=FOx=FOxi и Rly=FOy=Foyj. Согласно теореме Вариньона момент равнодействующей относительно начала координат равен главному моменту при центре приведения в начале координат, т. е. Моz=MOz(R1)=xFOy–yFOx. (5.14). Величины MOz, FOx и Foy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и у в уравнении (5.14) можно смотреть как на текущие координаты линии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При Fox≠0 его можно переписать в виде y=(Foy/Fox)x–(Moz/Fox).