Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Потоком требований (событий) называется последовательность однородных требований, появляющихся одно за другим в случайные моменты времени




Примеры: поток вызовов на телефонной станции; прибытие поездов на станцию; поток сбоев ЭВМ; поток заявок на проведение регламентных работ в вычислительном центре и т.п.

 

Потоки требований имеют такие свойства, как стационарность, ординарность и отсутствие последействия.

Свойство стационарности означает, что с течением времени вероятностные характеристики потока не меняются. Поток можно назвать стационарным, если для любого числа требований, поступивших за промежуток времени длиной , вероятность поступления требований зависит только от величины промежутка и не зависит от его расположения на оси времени.

 

Свойство ординарности означает практическую невозможность группового поступления требований. Поэтому поток требований можно назвать ординарным тогда, когда вероятность поступления двух или более требований за любой бесконечно малый промежуток времени есть величина бесконечно малая более высокого порядка, чем .

Свойство отсутствия последействия означает независимость вероятностных характеристик потока от предыдущих событий. Иными словами, вероятность поступления k требований в промежуток зависит от числа, времени поступления и длительности обслуживания требований до момента .

 

Простейшие потоки.Если поток требований обладает свойствами стационарности, ординарности и отсутствия последствия, то такой поток называется простейшим (или пуассоновским) потоком требований.

;

Интервал времени Т между двумя соседними событиями простейшего потока имеет показательное распределение:

;

Математическое ожидание, дисперсия и среднеквадратическое отклонение промежутка :

;

;

;

 

Пример. По шоссе мимо наблюдателя движется в одном направлении простейший поток машин. Известно, что вероятность отсутствия машин в течение минут равна . Требуется найти вероятность того, что за 10 мин мимо наблюдателя пройдет не более двух машин.

Решение. Примем за единицу времени мин. В задаче требуется найти

;

;

Из условия следует , т.е. , следовательно, . Таким образом, в предыдущее уравнение подставляем и получим ;

 

 

Лекция № 7 (24.09.2013)

Простейший поток с возможной нестационарностью. Простейшим потоком с возможной нестационарностью (нестационарным простейшим потоком) является поток, обладающий свойствами ординарности, отсутствием последействия и имеющий в каждый момент времени t конечное мгновенное значение параметра .

Мгновенная интенсивность нестационарного простейшего потока определяется как предел отношения среднего числа событий, которые произошли за элементарный интервал времени , к длине этого интервала, когда . Среднее число событий, наступающих в интервале времени , следующем непосредственно за моментом равно

;

Если поток событий стационарный, .

Тогда вероятность наступления k требований для рассматриваемого вида потока будет

;

ПРИМЕР. Рассмотрим простейший поток с нестационарным параметром, изменяющийся по закону. Параметр является периодическим, его период равен . Найти вероятность отсутствия требований на отрезке

Решение. Длина отрезка равна . Вычислим среднее число событий, наступающих в интервале времени ;

, тогда

;

 

Простейший поток с возможной неординарностью. Простейший поток с возможной неординарностью обладает свойствами стационарности и отсутствием последействия. Требования в таком потоке могут поступать не по одному, а сразу группами (пакетами). В этом случае все требования, приходящие одновременно, объединяются в пакеты, вероятность поступления двух или более числа пакетов за промежуток времени есть величина, бесконечно малая по отношению к . Каждый пакет, исходя из определения, содержит ходя бы одно требование.

Вероятность поступления требований для потока с возможной неординарностью с учетом вероятности нахождения требований в пакете.

Простейшие потоки с возможным последействием.Поток, имеющий конечное значение параметра и обладающий свойствами стационарности и ординарности является простейшим потоком с возможным последействием. Не являются Пуасоновскими. Условная вероятность поступления некоторого числа требований на заданном промежутке времени такого потока вычисляется при предположении о предыстории потока (о поступлении требований до этого промежутка времени) и может отличаться от безусловной вероятности того же события.

Вероятность поступления требований за данный промежуток времени t для потока с возможным последействием будет выглядеть следующим образом

 

 

где - функция Пальма-Хинчина.

Функция представляет собой вероятность поступления требований за время при условии, что в начальный момент этого промежутка поступает хотя бы одно (а в силу ординарности потока ровно одно) требование (это начальное требование не входит в число требований за время ).

 

Потоки Пальма.Ординарный поток событий называется потоком Пальма (или рекуррентным потоком, или потоком с ограниченным последействием), если интервалы времени между последовательными событиями представляют собой независимые, одинаково распределенные случайные величины.

В связи с одинаковостью распределений поток Пальма всегда стационарен. Простейший поток является частным случаем потока Пальма; в нем интервалы между событиями распределены по показательному закону.

 

Потоки Эрланга. Потоком Эрланга n-го порядка называется поток событий, получающийся «прореживанием» простейшего потока, когда сохраняется каждая n-я точка (событие) в потоке, а все промежуточные выбрасываются.

Если в каждом простейшем потоке оставить каждую вторую заявку, то получиться исток Эрланга второго порядка.

Интервал времени между двумя соседними событиями в потоке Эрланга n-го порядка представляет собой сумму независимых случайных величин , имеющих показательное распределение с параметром :

 

Закон распределения случайной величины называется законом Эрланга n-го порядка и имеет плотность вероятности

 

Математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины Т соответственно равны:

; ;

Для потоков Эрланга n-го порядка вероятность поступления требований за промежуток времени t равняется

 

для . При







Дата добавления: 2015-03-11; просмотров: 1601. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.003 сек.) русская версия | украинская версия