Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Часть 2. 1. Создали в окне Simulink-модели схему моделирования интегро-дифференцирующего звена, изображенную на рисунке 2





1. Создали в окне Simulink-модели схему моделирования интегро-дифференцирующего звена, изображенную на рисунке 2.

 

 

Рис.2 схема моделирования интегро-дифференцирующего звена

 
 

2. Используя формулу Хевисайда определим выражение выходного сигнала Uвых(t), Uвых(0) при «с»=1, «а»=0.5. Для этого упростили данную схему.

Рисунок 3

 

W1=1/(s+a)

W2=s+c

W(s)=W2*W2=(s+c)/(s+a)

Используя формулу Хевисайда определим значение выходного сигнала при “c”=1, “a”=0.5.U =1В

Передаточная функция данной схемы интегро-дифференцирующего звена имеет вид:

W=Kид*(Т1*s+1)/(T2*s+1),

где Кид=с/а=2; Т1=1/с=1; Т2=1/а=2.

 

В общем виде формула Хевисайда имеет вид:

Нашли корень характеристического уравнения из выражения передаточной функции:

s+a=0; s=-а= -0.5

(21)

 

3. Получили графики переходных процессов и расположение корней характеристического уравнения для коэффициентов «а» и «с», приведенных в таблице 1. Для каждого варианта рассчитали Кид, Т1, Т2 интегро-дифференцирующего звена и определили какую функцию выполняет данное звено.

Таблица 1

а с Т1 Т2 Kид S Свойства звена
  0.5 0.5       -0.5 Звено пропорциональное, устойчивое
  0.5         -0.5 Звено интегрирующее, устойчивое
  0.5       -0.5 Звено дифференцирующее, устойчивое
  0.5 -0.5 -2   -1 -0.5 Звено интегрирующее, устойчивое
    0.5     0.5 -1 Звено дифференцирующее, устойчивое
    0.5     Звено интегрирующее, нейтральное
  -0.5 0.5   -2 -1 0.5 Звено дифференцирующее, неустойчивое

 

 

 

По графикам видно, что при увеличении Т1 получаем звенья с преобладающими свойствами дифференцирования, а при увеличении Т2 — звенья с преобладающими свойствами интегрирования.

Вывод: В ходе лабораторной работы исследованы переходные процессы, вызванные ступенчатым воздействием в динамических звеньях первого порядка, оценены устойчивости звеньев по графикам переходных процессов и по корням характеристического уравнения. Из результатов работы можно сделать выводы о влиянии коэффициентов «а» и «с» на устойчивость звена первого порядка. Выяснили коэффициент «с» не влияет на устойчивость звена. На устойчивость звена первого порядка влияет коэффициент «а».

Как видно из полученных графиков при «а»=0 график представляет собой линейную зависимость, т.е. получили нейтральный процесс. При «а»=1 получаем устойчивый процесс и установившееся значение равно1. При «а»=-1 получаем неустойчивый процесс и установившееся значение которого равно бесконечности.

 







Дата добавления: 2015-06-15; просмотров: 507. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия