Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая и обратная геодезические задачи





 

При вычислительной обработке результатов измерений на мест­ности, при проектировании инженерных сооружений и перене­сении их в натуру возникает необходимость решать прямую и обратнуюгеодезические задачи.

Прямая геодезическая задача. Даны координатых1 и у1 точки А начала линии АВ, ее горизонтальное проложениеd и дирекционный угола. Требуется определить координаты х2 и у2 точки В конца этой линии (рисунок 10).

 

Рисунок 10 – Прямая и обратная геодезические задачи

 

Из рисунка 10 видно, что ко­ординаты

(1)

 

Разности координат конечной и начальной точек линии АВ, т. е. Δx и Δy называются приращениями координат:

(2)

 

При помощи румбов прираще­ния координат вычисляются по формулам:

(3)

Приращения координат име­ют знаки, которые зависят от знака косинуса и синуса дирекционного угла или от на­звания румба линии:

 

Румбы ……………………….. СВ ЮВ ЮЗ СЗ
Приращения:        
Dх ………………………. + - - +
Dу ………………………. + + - -


Вычисление приращений координат выполняют с помощью таб­лиц натуральных значений sin и cos или с помощью вычисли­тельных машин.

Обратная геодезическая задача. Даны координаты х1 и у1 точки А начала линии АВ и координаты x 2, у2 точки В конца этой линии. Требуется определить длину и дирекционный угол или румб этой линии. Из рисунка 10 следует, что

(4)

или

(5)

 

Название румба определяют по знакам Δ y и Δ x. Зная румб, можно вычислить дирекционный угола. Расстояниеd можно вычислить по формулам

 

(6)

 

или

(7)

 







Дата добавления: 2015-06-15; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия