Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение прямой геодезической задачи на малые расстояния по способу Шрейберга





МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

  ОДЕССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Способ применяется при вычислении геодезических координат и азимутов на пунктах триангуляции 1 класса. Пусть точки Q1 и Q2 проекции пунктов триангуляции на поверхность эллипсоида, между которыми решается геодезическая задача. В полярном сфероидическом треугольнике Q1РQ2 из точки Q2 проведём геодезическую линию Q2Q0 под прямым углом к меридиану точки Q1 . Получим два прямоугольных сфероидических треугольника. Точка Q0 называется вспомогательной точкой.

Последовательность решения задачи. Сначала по заданным начальному азимуту и А1 и стороне s решается малый сфероидический треугольник Q1Q0Q2 с целью определения сторон Q1Q0 и Q2Q0. После этого по длине дуги меридиана Q1Q0 вычисляется разность широт точек Q0 и Q1. затем решается второй прямоугольный сфероидический треугольник Q0РQ2 для получения разности долгот l = L1 – L2, разности широт d = В0 – В1 и угла t, который будет нужен для вычисления обратного азимута А2. Угол t представляет собой азимут направления, проведенного из точки Q2 под прямым углом к линии Q2Q0.

Исходные данные: B1, L1, A1, s.

Формулы, по которым производятся вычисления.

 

При расстояниях между пунктами не более 100 км формулы позволяют определять геодезические координаты с точностью до 0,0001" и азимуты с точностью до 0,001". Поэтому их применяют для вычислений в триангуляции 1 класса. При расстояниях до 600 км эти формулы обеспечивают получение координат ч точностью до 0,1".

Пример решения прямой геодезической задачи по способу Шрейберга

 

B1 60° 00' 00" u 0,000664061 t 0,0011509822
L1 10° 00' 00" υ 0,000664061 d"; 0° 00' 00,0789"
A1 45° 00' 00" B0 60° 02' 17,08728" ε 2,20488E-07
s 6000,000 V0 1,000840024 B2 60° 02' 17,0084"
V1 1,000841961 γ 0,000663501 L2 10° 04' 34,029"
σ 0,000939124 λ 0,001328531 A2 225° 03' 57,3616"
u0 0,000664061 τ 0,001150983    
υ0 0,000664061 l"; 0° 04' 34,02905"    

 








Дата добавления: 2015-06-15; просмотров: 502. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия