Дифференцирование и арифметические операций
Определение Пусть — алгебра над кольцом . Дифференцирование алгебры — это -линейное отображение , удовлетворяющее тождеству Лейбница: В более общем случае дифференцирование коммутативной со значениями в -модуле — это -линейное отображение , удовлетворяющее тождеству Лейбница. В этом случае называют дифференциальным модулем над Множество всех дифференцирований со значениями в обозначается (, ) и является -модулем. Функтор является представимым, его представляющий объект обозначается или и называется модулем кэлеровых дифференциалов. является начальным объектом в категории дифференциальных модулей над , то есть существует такое дифференцирование , что любое дифференцирование пропускается через :
|