Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение параметров линейного однофакторного уравнения регрессии





Пусть у нас имеются данные о доходах (X) и спрос на некоторый товар (Y) за ряд лет (n)

 

ГОД n ДОХОД X СПРОС Y
  x1 y1
  x2 y2
  x3 y3
... ... ...
n xn yn

 

Предположим, что между X и Y существует линейная взаимосвязь, т.е.

Для того, чтобы найти уравнение регрессии, прежде всего нужно исследовать тесноту связи между случайными величинами X и Y, т.е. корреляционную зависимость.

Пусть:

x , х ,..., х n- совокупность значений независимого, факторного признака;

y , y ..., y n – совокупность соответствующих значений зависимого, результативного признака;

n – количество наблюдений.

Для нахождения уравнения регрессии вычисляются следующие величины:

1. Средние значения

для экзогенной переменной.

 

для эндогенной переменной$

2. Отклонения от средних величин

, $

3. Величины дисперсии и среднего квадратичного отклонения

,.

Величины дисперсии и среднего квадратичного отклонения характеризуют разброс наблюдаемых значений вокруг среднего значения. Чем больше дисперсия, тем больше разброс.

4. Вычисление корреляционного момента (коэффициента ковариации):

Корреляционный момент отражает характер взаимосвязи между x и y. Если , то взаимосвязь прямая. Если , то взаимосвязь обратная.

5. Коэффициент корреляции вычисляется по формуле:

 

.

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (). Коэффициент корреляции в квадрате () называется коэффициентом детерминации.

Если , то вычисления продолжаются.

6. Вычисления параметров регрессионного уравнения.

Коэффициент b находится по формуле:

После чего можно легко найти параметр a:

Коэффициенты a и b находятся методом наименьших квадратов, основная идея которого состоит в том, что за меру суммарной погрешности принимается сумма квадратов разности (остатков) между фактическими значениями результативного признака и его расчетными значениями , полученными при помощи уравнения регрессии

.

При этом величины остатков находятся по формуле:

, где

фактическое значение y;

расчетное значение y.

Пример. Пусть у нас имеются статистические данные о доходах (X) и спросе (Y). Необходимо найти корреляционную зависимость между ними и определить параметры уравнения регрессии.


 

ГОД n ДОХОД X СПРОС Y
     
     
     
    10,3
    10,5
     

 

Предположим, что между нашими величинами существует линейная зависимость.

Тогда расчеты лучше всего выполнить в Excel, используя статистические функции;

СРЗНАЧ – для вычисления средних значений;

ДИСП – для нахождения дисперсии;

СТАНДОТКЛОН – для определения среднего квадратичного отклонения;

КОРЕЛЛ – для вычисления коэффициента корреляции.

Корреляционный момент можно вычислить, найдя отклонения от средних значений для ряда X и ряда Y, затем при помощи функции СУММПРОИЗВ определить сумму их произведений, которую необходимо разделить на n-1.

Результаты вычислений можно свести в таблицу.







Дата добавления: 2015-06-16; просмотров: 420. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия