Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение параметров линейного однофакторного уравнения регрессии





Пусть у нас имеются данные о доходах (X) и спрос на некоторый товар (Y) за ряд лет (n)

 

ГОД n ДОХОД X СПРОС Y
  x1 y1
  x2 y2
  x3 y3
... ... ...
n xn yn

 

Предположим, что между X и Y существует линейная взаимосвязь, т.е.

Для того, чтобы найти уравнение регрессии, прежде всего нужно исследовать тесноту связи между случайными величинами X и Y, т.е. корреляционную зависимость.

Пусть:

x , х ,..., х n- совокупность значений независимого, факторного признака;

y , y ..., y n – совокупность соответствующих значений зависимого, результативного признака;

n – количество наблюдений.

Для нахождения уравнения регрессии вычисляются следующие величины:

1. Средние значения

для экзогенной переменной.

 

для эндогенной переменной$

2. Отклонения от средних величин

, $

3. Величины дисперсии и среднего квадратичного отклонения

,.

Величины дисперсии и среднего квадратичного отклонения характеризуют разброс наблюдаемых значений вокруг среднего значения. Чем больше дисперсия, тем больше разброс.

4. Вычисление корреляционного момента (коэффициента ковариации):

Корреляционный момент отражает характер взаимосвязи между x и y. Если , то взаимосвязь прямая. Если , то взаимосвязь обратная.

5. Коэффициент корреляции вычисляется по формуле:

 

.

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (). Коэффициент корреляции в квадрате () называется коэффициентом детерминации.

Если , то вычисления продолжаются.

6. Вычисления параметров регрессионного уравнения.

Коэффициент b находится по формуле:

После чего можно легко найти параметр a:

Коэффициенты a и b находятся методом наименьших квадратов, основная идея которого состоит в том, что за меру суммарной погрешности принимается сумма квадратов разности (остатков) между фактическими значениями результативного признака и его расчетными значениями , полученными при помощи уравнения регрессии

.

При этом величины остатков находятся по формуле:

, где

фактическое значение y;

расчетное значение y.

Пример. Пусть у нас имеются статистические данные о доходах (X) и спросе (Y). Необходимо найти корреляционную зависимость между ними и определить параметры уравнения регрессии.


 

ГОД n ДОХОД X СПРОС Y
     
     
     
    10,3
    10,5
     

 

Предположим, что между нашими величинами существует линейная зависимость.

Тогда расчеты лучше всего выполнить в Excel, используя статистические функции;

СРЗНАЧ – для вычисления средних значений;

ДИСП – для нахождения дисперсии;

СТАНДОТКЛОН – для определения среднего квадратичного отклонения;

КОРЕЛЛ – для вычисления коэффициента корреляции.

Корреляционный момент можно вычислить, найдя отклонения от средних значений для ряда X и ряда Y, затем при помощи функции СУММПРОИЗВ определить сумму их произведений, которую необходимо разделить на n-1.

Результаты вычислений можно свести в таблицу.







Дата добавления: 2015-06-16; просмотров: 420. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия