Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие оптимизационных задач и оптимизационных моделей





Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурсов (труда, капитала и пр.), называются оптимизационными.

Оптимизационные задачи (ОЗ) решаются с помощью оптимизационных моделей (ОМ) методами математического программирования.

Структура оптимизационной модели состоит из целевой функции, области допустимых решений и системы ограничений, определяющими эту область. Целевая функция в самом общем виде в свою очередь также состоит из трех элементов:

· управляемых переменных;

· неуправляемых переменных;

· формы функции (вида зависимости между ними).

Область допустимых решений – это область, в пределах которой осуществляется выбор решений. В экономических задачах она ограничена наличными ресурсами, условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств.

Если система ограничений несовместима, то область допустимых решений является пустой. Ограничения подразделяются на:


а) линейные (I и II) и нелинейные (III и IV) (рис.3.1.);

 

 

Рис.3.1. Линейные и нелинейные ограничения

 

б) детерминированные (А,В) и стохастические (группы кривых ) (рис.3.2.).

Рис. 3.2. Детерминированные и стохастические ограничения

 

Стохастические ограничения являются возможными, вероятностные, случайными.

Оптимизационные задачи решаются методами математического программирования, которые подразделяются на:

* линейное программирование;

* нелинейное программирование;

* динамическое программирование;

* целочисленное программирование;

* выпуклое программирование;

* исследование операций;

* геометрическое программирование и др.

Главная задача математического программирования – это нахождение экстремума функций при ограничениях в форме уравнений и неравенств.

Рассмотрим оптимизационные задачи, решаемые методами линейного программирования.







Дата добавления: 2015-06-16; просмотров: 562. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2026 год . (0.007 сек.) русская версия | украинская версия