Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий совместности Кронекера-Капелли





Система линейных уравнений имеет вид:

где аij – коэффициенты при неизвестных, bi – свободные члены м(i = ; j = ), xj - неизвестные.

Решением системы называется такая совокупность n чисел (x1=c1, x2=c2,..., xn=cn), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение. Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Система называется несовместной, если она не имеет решений.

Пример:

- система уравнений совместная и определенная, так как имеет единственное решение (10; 0);

- система уравнений несовместная;

- система уравнений совместная и неопределенная, так как имеет более одного решения (x1=c, x2=10-2c), где с – любое число.

Запишем систему уравнений в матричной форме

AX = B,

где - матрица коэффициентов при неизвестных, называемая матрицей системы, - столбец переменных, столбец свободных членов.

Если к матрице системы приписать столбец свободных членов, то получится расширенная матрица системы вида

.

Вопрос о совместности системы решается следующей теоремой.

Теорема Кронекера-Капелли: Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

Система имеет единственное решение только в том случае, когда ранг матрицы совместной системы равен числу переменных r(A) = n.

Если ранг матрицы совместной системы меньше числа переменных, то система неопределенная и имеет бесконечное множество решений.







Дата добавления: 2015-03-11; просмотров: 1143. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия