Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МОДЕЛИРОВАНИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ, ПОДЧИНЕННОЙ НОРМАЛЬНОМУ ЗАКОНУ





Закон нормального распределения вероятностей непрерывной случайной величины занимает особое место среди различных теоретических законов, т. к. является основным во многих практических исследованиях, им описывается большинство случайных явлений, связанных с производственными процессами.

К случайным явлениям, подчиняющимся нормальному закону распределения, относятся ошибки измерений производственных параметров, распределение технологических погрешностей изготовления, рост и вес большинства биологических объектов, распределение параметров пленочных резисторов и др.

Нормальным называют закон распределения вероятностей непрерывной случайной величины, который описывается дифференциальной функцией

(6.5)

где

a - математическое ожидание случайной величины;

-среднее квадратичное отклонение нормального распределения.

График дифференциальной функции нормального распределения называют нормальной кривой (кривой Гаусса) (рис. 6.7).


Рис. 6.7.

Свойства нормальной кривой (кривой Гаусса):

  1. Кривая симметрична относительно прямой x = a.
  2. Нормальная кривая расположена над осью X, т. е. при всех значениях X функция f(x) всегда положительна.
  3. Ось X является горизонтальной асимптотой графика, т. к.

  1. При x = a функция f(x) имеет максимум равный

  1. В точках A и B при и кривая имеет точки перегиба, ординаты которых равны.

При этом, вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит среднего квадратичного отклонения , равна 0,6826.

  1. В точках E и G, при и значение функции f(x) равно

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит удвоенного среднего квадратичного отклонения, равна 0,9544.

  1. Асимптотически приближаясь к оси абсцисс, кривая Гаусса в точках C и D, при и , очень близко подходит к оси абсцисс. В этих точках значение функции f(x) очень мало

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит утроенного среднего квадратичного отклонения, равна 0,9973. Это свойство кривой Гаусса называется "правило трех сигм".

Изменение величины параметра a (математического ожидания случайной величины) не изменяет форму нормальной кривой, а приводит лишь к ее смещению вдоль оси X: вправо, если a возрастает, и влево, если a убывает.

При a=0 нормальная кривая симметрична относительно оси ординат.

Изменение величины параметра (среднего квадратичного отклонения) изменяет форму нормальной кривой: с возрастанием ординаты нормальной кривой убывают, кривая растягивается вдоль оси X и прижимается к ней. При убывании ординаты нормальной кривой увеличиваются, кривая сжимается вдоль оси X и становится более "островершинной".

При этом, при любых значениях и площадь ограниченная нормальной кривой и осью X, остается равной единице (т. е. вероятность того, что случайная величина, распределенная нормально, примет значение ограниченное на оси X нормальной кривой, равна 1).

Нормальное распределение с произвольными параметрами и т. е. описываемое дифференциальной функцией

называется общим нормальным распределением.

Нормальное распределение с параметрами и , т. е. описываемое дифференциальной функцией

(6.6)

называется нормированным распределением (рис. 6.8). В нормированном распределении дифференциальная функция распределения равна:


Рис. 6.8.

Интегральная функция общего нормального распределения имеет вид:

(6.7)

Интегральная функция нормированного распределения имеет вид:

(6.8)

где

Пусть случайная величина X распределена по нормальному закону в интервале (c, d). Тогда вероятность того, что X примет значение, принадлежащее интервалу (c, d) равна

Пронормируем это выражение. Для этого введем новую переменную z

Откуда: .

Новые пределы интегрирования:

Для

для

Тогда, после нормирования, вероятность того, что случайная величина X примет значение, принадлежащее интервалу (c, d) равна

Пользуясь функцией Лапласа (функция табулирована)

окончательно получим

Пример.

Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратичное отклонение этой случайной величины равны a=30 и Найти вероятность того, что X примет значение в интервале (10, 50).

Решение:

По условию: .

Тогда

Пользуясь готовыми таблицами Лапласа, имеем:

Отсюда .








Дата добавления: 2015-04-16; просмотров: 880. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия