Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 2-4 Комбинированные преобразования на плоскости





Рассмотрим треугольник ABC на рис. 2-10. Выполним над ним два преобра
зования: поворот на +90° вокруг точки начала координат

и отражение относительно линии у = - х

Результатом воздействия комбинированного преобразования [ Т 3] = [ T 1][ T 2]

на треугольник ABC является

или

Получившийся треугольник является конечным результатом данного преобразования, а треугольник А'В'С' —промежуточным результатом (рис. 2-10).

Проведем преобразование в обратном порядке

или

Конечным результатом будет треугольник D Е F , а промежуточным D'E'F' (рис. 2-10). Оба результата различны, тем самым снова подтверждается важность порядка применения преобразований. Отметим также, что для определителей справедливы равенства det [ Т 3] = - 1, и det [ Т 4]= - 1 и поэтому оба результата могут быть получены с помощью единственного отражения. Треугольник А В С можно получить из ABC путем отражения относительно оси Y (матрица [ Т 3] и уравнение (2-34)), D E F получается из ABC при отражении относительно оси X (матрица [ Т 4]и уравнение (2-33)).

2-13 ПРЕОБРАЗОВАНИЕ ЕДИНИЧНОГО КВАДРАТА

До сих пор мы рассматривали поведение точек и линий для определения результатов простых матричных преобразований. Однако можно корректно рассматривать применение матрицы к любой точке плоскости. Как было показано ранее, единственная точка, остающаяся инвариантной при воздействии матричных преобразований, это точка начала координат. Все другие точки плоскости подвержены преобразованию, которое можно представить как растяжение исходной плоскости, системы координат и перевод в новую форму. Формально принято считать, что преобразование вызывает переход от одного координатного пространства к другому.

Рассмотрим координатную сетку, состоящую из единичных квадратов на координатной плоскости ху (рис. 2-11). Четыре координатных вектора вершин единичного квадрата, проходящие под одним углом к началу координат, имеют следующий вид:

Такой единичный квадрат изображен на рис. 2-11а. Применяя к нему (2 х 2)-матрицу общего преобразования, получаем

(2-38)

Результаты этого преобразования показаны на рис. 2-11 b. Из выражения (2-38) следует, что начало координат не подвергается преобразованию, т.е. [ А ]= [ А ]= [0 0]. Далее отметим, что координаты В равны первой строке матрицы преобразования, а координаты D —второй. Таким образом, матрица преобразования является определенной, если определены координаты В и D (преобразование единичных векторов [1 0], [0 1]). Поскольку стороны единичного квадрата первоначально параллельны и ранее было показано, что параллельные линии преобразуются снова в параллельные, то результирующая фигура является параллелограммом.

Влияние элементов а, b, с и d матрицы 2x2 может быть установлено отдельно. Элементы b и c, как видно из рис. 2-11 b, вызывают сдвиг (см. разд. 2-4) исходного квадрата в направлениях у и х соответственно. Как отмечалось ранее, элементы a и d играют роль масштабных множителей. Таким образом, 2 х 2-матрица задает комбинацию сдвига и масштабирования.

Несложно определить также площадь параллелограмма A B C D из рис. 2-11 b, которую можно вычислить следующим образом:

В результатеполучаем

(2-39)

Можно показать, что площадь любого параллелограмма AP образованногопутем преобразования квадрата, есть функцияот определителя матрицы преобразования и связана с площадью исходного квадрата A S простым отношением

(2-40)

Фактически, так как площадь всей фигуры равна сумме площадей единичныхквадратов, то площадь любой преобразованной фигуры At зависит от площади исходной фигуры Ai

(2-41)

Это полезный способ определения площадей произвольных фигур.







Дата добавления: 2015-04-16; просмотров: 469. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия