Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 2-1 Средняя точка прямой





Рассмотрим отрезок AB из рис. 2-2. Положение векторов конечных точек такое: [ А ]= [0 1], [ В ]= [2 3]. Преобразование [ Т ] = осуществляет перемещение вектора на линию А В :

Средняя точка A*B* будет иметь координаты

Координаты средней точки линии AB равны

Преобразуем среднюю точку и получим

что полностью эквивалентно предыдущему результату.

Применением этих результатов в машинной графике любая прямая может быть преобразована в любую другую прямую путем простого преобразования ее конечных точек и восстановления линии между ними.

2-7 ПРЕОБРАЗОВАНИЕ ПАРАЛЛЕЛЬНЫХ ЛИНИЙ

Результатом преобразования двух параллельных линий с помощью (2x2)-матрицы снова будут две параллельные линии. Это можно увидеть, рассмотрев линию между точками [ А ] = [ x 1 y 1], [ В ]= [ x 2 y 2] и параллельную ей линию, проходящую между точками Е и F. Покажем, что для этих линийлюбое преобразование сохраняет параллельность. Так как АВ, EF и А В и Е F параллельны, то угол наклона линий АВ и EF определяется следующим образом:

(2-16)

Преобразуем конечные точки АВ, воспользовавшись матрицей общегопреобразования размером (2 х 2):

(2-17)

Наклон прямой А В определяется следующим образом:

или

. (2-18)

Так как наклон т не зависит от x 1, x 2, y 1, y 2, а m, a, b, c и d одинаковы для EF и АВ, то т одинаково для Е F и А В . Таким образом, параллельные линии сохраняют параллельность и после преобразования. Это означает, что при преобразовании (2 х 2) параллелограмм преобразуется в другой параллелограмм.Эти тривиальные выводы демонстрируют большие возможности использованияматрицы преобразования для создания графических эффектов.

2-8 ПРЕОБРАЗОВАНИЕ ПЕРЕСЕКАЮЩИХСЯ ПРЯМЫХ

Результатом преобразования с помощью (2х 2) - матрицы пары пересекающихсяпрямых линий также будет пара пересекающихся линий.Проиллюстрируем этот факт на примере двух прямых, изображенных на рис. 2-3 штриховой линией и заданных уравнениями

В матричном представлении эти уравнения будут иметь вид:

или [ X ][ M ]=[ B ]. (2-19)

Если существует решение этой системы уравнений, то линии пересекаются, в противном случае они параллельны. Решение можно найтипутем инверсии матрицы.

В частности,

(2-20)

Матрица, обратная [ M ], имеет следующий вид:

(2-21)

так как [ М ][ М ]-1= [ I ], где [ I ] —единичная матрица. Поэтому координаты точкипересечения двух линий можно найти следующим образом:

(2-22)

Если обе линии преобразовать с помощью (2 х 2)-матрицы общего преобразования вида

,

то их уравнения будут иметь вид

Соответственно можно показать, что

(2-23)

и где i =1,2 (2-24)

Точка пересечения линий после преобразования отыскивается таким жеобразом, как и в случае исходных линий:

.

Воспользовавшись выражениями (2-23) и (2-24), получим

(2-25)

Возвращаясь теперь к точке пересечения [ xi yi ]исходных линий и применяя уже полученную матрицу преобразования, имеем

(2-26)

Сравнение уравнений (2-25) и (2-26) показывает, что они одинаковы. Итак, точка пересечения преобразуется точно в другую точку пересечения.







Дата добавления: 2015-04-16; просмотров: 445. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия