Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 2-6 Поворот относительно произвольной точки





Предположим, что центр объекта лежит в точке [4 3]. Требуется повернуть объект на прямой угол против часовой стрелки вокруг центра. Используя матрицу

проведем поворот вокруг начала координат, не совпадающего с центром объекта. Обязательной процедурой преобразования является, прежде всего, такое перемещение объекта, чтобы желаемый центр вращения оказался в начале координат. Это достигается с помощью следующей матрицы перемещения:

Далее применяем матрицу поворота и, наконец с помощью матрицы перемещения приведем результаты поворота обратно к первоначальному центру. Вся операция

может быть реализована одной матрицей путем простого перемножения отдельных матриц, т.е.

.

2-17 ОТРАЖЕНИЕ ОТНОСИТЕЛЬНО ПРОИЗВОЛЬНОЙ ПРЯМОЙ

Ранее в разделе 2-10 обсуждалось отражение относительно прямых, проходящих через начало координат. Иногда требуется выполнить отражение объекта относительно прямой, не проходящей через точку начала координат. Это можно сделать, воспользовавшись процедурой, аналогичной вращению вокруг произвольной точки. Конкретно выполняются следующие действия:

- перемещение линии и объекта таким образом, чтобы линия прошла через начало координат;

- поворот линии и объекта вокруг точки начала координат до совпадения с одной из координатных осей;

- отражение относительно координатной оси;

- обратный поворот вокруг начала координат;

- перемещение в исходное положение.

В матричном виде данное преобразование имеет представление

(2-53)

где — матрица перемещения, R — матрица поворота вокруг начала координат, матрица отражения.

Перемещения, повороты и отражения также применяются для преобразования произвольных фигур. Рассмотрим следующий пример.







Дата добавления: 2015-04-16; просмотров: 599. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия