Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Трехмерные преобразования





3-1 ВВЕДЕНИЕ

В трехмерном пространстве также можно ввести однородные координаты так, что точке будет соответствовать бесконечное множество точек четырехмерного пространства, где h-любое ненулевое число. Мы рассмотрим некоторые элементарные преобразования в трехмерном пространстве и выпишем соответствующие им матрицы преобразований.

3-2 ПОВОРОТЫ ВОКРУГ ОСЕЙ

В отличие от двумерного случая в трехмерном имеется три основных поворота – вокруг оси X, вокруг оси Y и вокруг оси Z. Вращение пространства вокруг оси Z на угол против часовой стрелки (если смотреть с конца вектора Z) соответствует повороту в плоскости XY. При этом координата z не меняется, поэтому матрица такого вращения имеет вид

. (3-1)

Вращение против часовой стрелки вокруг оси X на угол соответствует повороту в плоскости YZ. То есть это вращение полностью аналогично предыдущему с точностью до переименования осей . Поэтому, переставляя соответствующим образом (а именно, ) строки и столбцы матрицы (3-1), получим матрицу:

. (3-2)

Аналогично, матрица поворота вокруг оси Y на угол y против часовой стрелки получается из матрицы (3-1) следующей перестановкой строк и столбцов: . В результате получаем матрицу

. (3-3)

3-3 РАСТЯЖЕНИЕ ВДОЛЬ ОСЕЙ

Растяжение (сжатие) вдоль осей X, Y, Z с коэффициентами соответственно a, b, c > 0 осуществляется с помощью матрицы следующего вида

. (3-4)

3-4 ОТРАЖЕНИЕ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ

При отражении, например, относительно плоскости XY координаты x и y не изменяются, а координата z меняет знак. Аналогичная ситуация при отражении относительно других плоскостей: YZ и ZX. Поэтому соответствующие матрицы будут иметь вид:

3-5 Перенос (сдвиг)

Матрица переноса (сдвига) пространства на вектор d = (d1, d2, d3) имеет вид

. (3-5)







Дата добавления: 2015-04-16; просмотров: 404. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия