Трехмерные преобразования
3-1 ВВЕДЕНИЕ В трехмерном пространстве также можно ввести однородные координаты так, что точке будет соответствовать бесконечное множество точек четырехмерного пространства, где h-любое ненулевое число. Мы рассмотрим некоторые элементарные преобразования в трехмерном пространстве и выпишем соответствующие им матрицы преобразований. 3-2 ПОВОРОТЫ ВОКРУГ ОСЕЙ В отличие от двумерного случая в трехмерном имеется три основных поворота – вокруг оси X, вокруг оси Y и вокруг оси Z. Вращение пространства вокруг оси Z на угол против часовой стрелки (если смотреть с конца вектора Z) соответствует повороту в плоскости XY. При этом координата z не меняется, поэтому матрица такого вращения имеет вид . (3-1) Вращение против часовой стрелки вокруг оси X на угол соответствует повороту в плоскости YZ. То есть это вращение полностью аналогично предыдущему с точностью до переименования осей . Поэтому, переставляя соответствующим образом (а именно, ) строки и столбцы матрицы (3-1), получим матрицу: . (3-2) Аналогично, матрица поворота вокруг оси Y на угол y против часовой стрелки получается из матрицы (3-1) следующей перестановкой строк и столбцов: . В результате получаем матрицу . (3-3) 3-3 РАСТЯЖЕНИЕ ВДОЛЬ ОСЕЙ Растяжение (сжатие) вдоль осей X, Y, Z с коэффициентами соответственно a, b, c > 0 осуществляется с помощью матрицы следующего вида . (3-4) 3-4 ОТРАЖЕНИЕ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ При отражении, например, относительно плоскости XY координаты x и y не изменяются, а координата z меняет знак. Аналогичная ситуация при отражении относительно других плоскостей: YZ и ZX. Поэтому соответствующие матрицы будут иметь вид: 3-5 Перенос (сдвиг) Матрица переноса (сдвига) пространства на вектор d = (d1, d2, d3) имеет вид . (3-5)
|