Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы моделирования спроса и потребления





Основным понятием теории потребления является функция полезности U(x,у). Эта функция выражает меру полезности на­бора (х,у), где х – количество товара X, а у – количество товара Y. Чувствительность набора (х,у) к незначительному изменению х при фиксированном у называется предельной полезностью х и определяется как частная производная U'х. Аналогично предельная полезность у определяется как U'у. Чаще всего линии уровня функции полезности (их еще называют кривыми безразличия) являются графиками убывающих функций. Поэтому мы будем считать, что для точек А(х 0, у 0 ) и В(х 0 + D х, у 0 + D у), расположенных на одной линии уровня приращения, D х >0, а D у < 0. (рис. 1.1.1).

В этом случае гово­рят, что D х единиц первого товара замещается на ( D у) единиц второго товара (имеется в виду переход из точки В в точку А).

Предельной нормой замещения х на у в точке А называется предел отношения ( D у) /D х, когда точка В стремится к А, оставаясь на одной с А линии уровня функции U (x, у). Предельная норма замещения обозначается MRSху или MRSху(А), если необходимо явно указать ее зависимость от точки А.

Предельная норма замещения одного товара дру­гим равна отношению их предельных полезностей.

(1.1.1)

Пример 1.1.1. Найти предельную норму замещения х на у для функции полезности U(x,y) = ln х + ln y в точках: а) (3;12), б) (2;1).

Решение. а) По формуле (1.1.1) получаем

поэтому MRSху (3; 12) = 4.

б). Аналогично находим MRSху (2; 1) = 0,5.

В теории потребительского спроса на два блага х и у (к примеру, исследуемое х и все остальные у) предпочтения потребителя описываются функцией полезности U(x, y), a бюджетное ограничение (расходы потребителя не более его дохода) в случае, когда потребитель тра­тит весь свой доход на рассматриваемые блага: хрх+ уру = I, где I – доход потребителя, а рх и ру – цены благ х и у соответственно. Для того, чтобы построить графики этих неявно заданных функций у (х) в системе координат, где по оси абсцисс отложена величина блага х, а по оси ординат – у, нужно выразить в явном виде величину у как функцию от х для обеих зависимостей. Сделаем это для простейшей функции полезности U(x, y)= xy. Для уровня полезности (благосостояния) U0 и дохода I получаем следующие функции:

Графиком первой из этих функций (она называется кривой безразличия, т.к. показывает все пары (х, у), дающие одинаковое значение функции полезности) является гипербола, а графиком второй (бюджетного ограничения) – прямая линия, имеющая отрицательный наклон, равный по абсолютной величине относительной цене блага х и точку пересечения с осью ординат I/ ру, соответствующую количеству блага у, которое можно приобрести по цене ру, если потратить на него весь доход I (построить график самостоятельно).

Другим примером функций в экономике служат функции спроса и предложения p (q), выражающие связь цены блага и величины спроса или предложения блага при постоянных вкусах потребителей, ценах на другие блага и других параметрах. Пример графика функции спроса и функции предложения приводится на рис. 1.1.2. График функции предложения, в отличие от функции спроса, отражает положительную связь переменных (D(q) – связь цены блага и величины спроса, S(q) – предложения).

 
 


р

q

Рис. 1.1.2

В модели потребительского спроса используются также функ­ции Торнквиста, моделирующие связь между величиной дохода I и величиной спроса потребителей х на:

а) малоценные товары

б) товары первой необходимости

в) товары второй необходимости

г) предметы роскоши

Соответствующие им графи­ки приведены на рис. 1.1.3.

Рис. 1.1.3







Дата добавления: 2015-04-16; просмотров: 919. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия