Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции спроса, уравнение Слуцкого





Пусть р – цена товара X, q – цена товара Y, R – доход потре­бителя. Напомним, что функцией полезности U (x, у) называется функция, задающая степень полезности (для потребителя) набора товаров, состоящего из х единиц товара Х и у единиц товара Y. Будем считать, что потребитель может покупать только такие наборы (х, у), стоимость которых не превосходит его дохода, т.е. рх + qy £ R.

Определение. Пусть функция полезности U (x, y), при любых положительных р, q и R имеет на множестве

{ рх + qy £ R, x ³0, y ³0} (1.1.6)

единственную точку глобального максимума (х *; у *). Тогда х *; у * функции от р, q и R: х * = xD (p,q,R), y * = yD (p,q,R).

Эти функции называются функциями спроса.

Смысл данного определения в том, что потребитель стремится к наибольшему удовлетворению от купленных им товаров при ограниченных средствах.

Для любого t > 0 функции спроса удовлетворяют следующим тождествам:

xD (tp, tq, tR)= xD (p, q, R), yD (tp, tq, tR)= yD (p, q, R).

Таким образом, функции спроса являются однородными функциями степени однородности 0. Следовательно, для дифференцируемых функций спроса выполняются тождества Эйлера:

px 'p+ qx 'q+ Rx 'R= 0, py 'p+ qy 'q+ Ry 'R= 0, (1.1.7)

а также следующие уравнения для эластичности:

Е хр+ Е хq+ Е хR= 0, Е ур+ Е уq+ Е уR= 0.

Функция Лагранжа запишется так:

L(х,у) = U(x,y) + l (R – рх – qy).

Необходимые условия условного экстрему­ма (условия Куна-Таккера) для функции L(x,у) будут следующие:

U ' x(х,у) – l р= 0, U'y(x,y) – l q = 0,

(R–px – qy)= 0, (1.1.8)

l ³;0.

Если U'x > 0 или U'y > 0 (чаще всего выполняются оба условия), то тогда l можно исключить из системы. В итоге получаем систему уравнений

U ' x(х,у) / U'y(x,y) = р / q,

рx + qy= R. (1.1.9)

Первое выражение в (1.1.9) называют вторым законом Госсена. В общем виде он звучит так: максимум полезности обеспечивает такая структура покупок, при которой отношение предельной полезности каждого блага к его цене одинаково для всех благ.

Пpимер 1.1.4. Найти функции спроса xD, yD в случае функции полезности

U(x,у)= ln х + ln у – ln(x + у).

Решение. Для заданной функции полезности частные производные первого порядка таковы:

Система уравнений (1.1.9) имеет вид

U'x / U'x=y 2 / x 2 = p/q,

рx + qy= R.

Поэтому функции спроса таковы:

В заключение выведем уравнение Слуцкого для функций спроса. С этой целью преобразуем выражение q(x'q + ух'R). С учетом равенства

qx'q = –рх'р – Rх'R, следующего из тождеств Эйлера (1.1.7), и равенства

qy = R – рх, вытекающего из бюджетного равенства рх + qy = R, имеем

q(x'q + ух'R) = –px'p –рх ´ х'R = – (px'p + х) + х (1 – рх'R) =

= (R – рх)'p + x(R – рх)'R = qy'p + xqy'R.

Разделив первое и последнее выражения на q, получим уравнение Слуцкого:

х'q +ух'R =у'p +ху'R. (1.1.10)

Уравнение Слуцкого можно умножить на R / xy. Тогда оно приобретает вид

b-1 Eхq + ExR =a-1 Eyp + EyR,

где Ехq, Еyp перекрестные коэффициенты эластичности спроса, ExR, EуR коэффициенты эластичности спроса по доходу, a =рх/R, b =qy/R – доли расходов на товары Х и Y в бюджете R..







Дата добавления: 2015-04-16; просмотров: 619. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия