Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование математического ожидания и среднего квадратичного отклонения для оценки риска





Если решение принимается однократно, то необходимо определить степень отклонения от математического ожидания, т.е. вычислить дисперсию и среднее квадратичное отклонение для оценки риска.

Чем меньше среднее квадратичное отклонение, тем больше уверенности, что принятое решение даст результат, близкий к математическому ожиданию.

Рассмотрим применение среднего квадратичного отклонения для оценки риска на небольшом примере.

Пример 2.7.6. Предприятие производит некоторую продукцию, спрос на которую в течение месяца 6, 7, 8 или 9 ящиков с вероятностями 0,1; 0,3; 0,5; 0,1 соответственно. Затраты на производство одного ящика равны 45 тыс. руб. Предприятие продает один ящик по цене 95 тыс. руб. Если ящик с продукцией не продается в течение месяца, то она портится и предприятие не получает дохода. Сколько ящиков следует производить?

Рассчитаем доходы по каждой альтернативе и каждому исходу, математическое ожидание дохода и среднее квадратичное отклонение по каждой альтернативе и занесем в табл. 2.7.9.

Поясним расчеты для альтернативы производить 8 ящиков.

Если спрос 6 ящиков, то доход составит 6×95 – 8×45 = 210 тыс. руб.

Если спрос 7 ящиков, то доход составит 7×95 – 8×45 = 305 тыс. руб.

Если спрос 8 ящиков, то доход составит 8×95 – 8×45 = 400 тыс. руб.

Если спрос 9 ящиков, то доход тот же, так как произведено всего 8.

Таблица 2.7.9.

Объем производства (ящиков) Возможные исходы: спрос ящиков в месяц Ожидаемый доход (тыс. руб.) Среднее квадратичное отклонение
(0,1) (0,3) (0,5) (0,1)
             
          340,5 28,5
          352,5 63,73
             

Ожидаемый доход 210×0,1+305×0,3+400×0,5+400×0,1=352,5.

Дисперсия дохода составит (210 –352,5)2×0,1 + (305–352,5)2×0,3 +

+ (400–352,5)2×0,5+(400–352,5)2×0,1=4061,25.

Среднее квадратичное отклонение равно =63,73.

Итак, если принимаемое решение будет многократно использовано, то лучшая альтернатива производить 8 ящиков в месяц, при этом будет обеспечен максимальный средний доход 352,5 тыс. руб. Но если необходимо принять разовое решение, то предпочтительнее произвести 7 ящиков, при этом ожидаемая прибыль несколько меньше, зато риск резко сокращается: в первом случае ожидаемая прибыль будет лежать в пределах 352,5 ± 63,73, а во втором случае ожидаемая прибыль будет лежать в пределах 340,5 ± 28,5. В любом случае решение должен принимать руководитель с учетом его опыта, склонности к риску и степени достоверности оценок вероятностей спроса. Вся информация для принятия решения содержится в табл. 2.7.9.







Дата добавления: 2015-04-16; просмотров: 488. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия