Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 1. Для двух предприятий выделено a единиц средств





Для двух предприятий выделено a единиц средств. Как распределить все средства в течение 4 лет, чтобы доход был наибольшим, если известно, что доход от x единиц средств, вложенных в первое предприятие, равен f 1(x), а доход от y единиц средств, вложенных во второе предприятие, равен f 2(y). Остаток средств к концу года составляет g 1(x) для первого предприятия и g 2(y) для второго предприятия.

a= 1000, f 1=3 х, g 1=0,1 х; f 2=2 у; g 2= 0,5 y.

РЕШЕНИЕ. Процесс распределения средств разобьем на 4 этапа – по соответствующим годам.

Обозначим ak = xk + yk средства, которые распределяются на k –ом шаге как сумма средств по предприятиям.

Суммарный доход от обоих предприятий на k –ом шаге:

zk = f 1(xk) + f 2(akxk) = 3 xk + 2(akxk) = 2 ak + xk .

Остаток средств от обоих предприятий на k –ом шаге:

ak+ 1 =g 1(xk)+ g 2(akxk) =0,1 xk + 0,5(akxk) =0,5 ak –0,4 xk.

Обозначим z * k (ak) – максимальный доход, полученный от распределения средств ak между двумя предприятиями с k -го шага до конца рассматриваемого периода.

Рекуррентные соотношения Беллмана для этих функций

z *4(a 4)= a 4+ x 4},

z * k (ak)= ak + xk + z * k+ 1(0,5 ak – 0,4 xk)}.

Проведем оптимизацию, начиная с четвертого шага:

Й шаг.

Оптимальный доход равен:

z *4(a 4 )= a 4+ x 4}= 3 a 4,

т.к. линейная возрастающая функция достигает максимума в конце рассматриваемого промежутка, т.е. при x 4= a 4.

Й шаг.

z *3(a 3)= a 3+ x 3 + 3(0,5 a 3– 0,4 x 3)}= a 3– 0,2 x 3)}= a 3

т.к. линейная убывающая функция достигает максимума в начале рассматриваемого промежутка, т.е. при x 3= 0.

Й шаг.

z *2(a 2)= a 2+ x 2 + 3.5(0,5 a 2– 0,4 x 2)}= a 2– 0,4 x 2)}= a 2,

т.к. линейная убывающая функция достигает максимума в начале рассматриваемого промежутка, т.е. при x 2=0.

Й шаг.

z *1(a 1)= a 1+ x 1 + 3.75(0,5 a 1– 0,4 x 1)}= a 1– 0,5 x 1)}= a 1,

т.к. линейная убывающая функция достигает максимума в начале рассматриваемого промежутка, т.е. при x 1=0.

Результаты оптимизации:

z *1(a 1)= 3,875 a 1, x *1 =0,

z *2(a 1)= 3,75 a 2, x *2 =0,

z *3(a 3)= 3,5 a 3, x *3 =0,

z *4(a 4)= 3 a 4, x *4 = a 4.

Определим количественное распределение средств по годам:

Т.к. a 1= a =1000, x *1=0, получаем a 2=0.5 a 1– 0.41 x *1=500. Далее аналогично:

x *2=0, a 3= 0.5 a 2–0.4 x *2=250,

x *3=0, a 4= 0.5 a 3−0.4 x *3=125,

x *4= a 4=125.

Представим распределение средств в виде таблицы:

предприятие год
       
         
         

При таком распределении средств за 4 года будет получен доход, равный

z *1(a 1)= 3,875 ·1000= 3875.

 







Дата добавления: 2015-04-16; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия