Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение и анализ экологических моделей. Регрессионный анализ





 

При построении математических зависимостей могут быть две
формы связей между функцией и переменными: функциональная и
регрессионная. Если функциональные связи точно выражаются аналитическими уравнениями, то регрессионные связи выражаются уравнениями лишь приближенно. В общем случае можно сказать, что связь
между функцией и аргументами будет тогда функциональной,когда
будут учтены все аргументы, определяющие значения функции.

Уравнение регрессии составляется исследователем на основе характера связи между функцией и аргументами. Вопрос о форме связи решается, как правило, поэтапно.

Вначале рассматривается линейная форма связи вида:

Y = b0 + b 1 X 1 +b 2 X 2 +...+ bn X n

где Хi — факторы (i = 1, 2,..., n), так как такая форма связи часто встреча-

ется на практике и для нее разработан хороший математический математический аппарат.

 

При этом могут решаться следующие задачи:

установление точности определения коэффициентов уравнения регрессии b i в виде значений дисперсии S 2 (b i) или величины доверительных интервалов;

установление значимости коэффициента bi;

проверка адекватности установленной формы связи и экспериментальных данных.

При установлении тесноты связи между Y и Х решается задача
установления строгости соблюдения функциональной зависимости
между изменениями Y и Х. Для оценки тесноты связи между случайными переменными величинами используются показатели:

а) в случае линейной формы связи

коэффициент парной корреляции ryx или rxy, характеризующий строгость соблюдения пропорциональности, т.е. близость ис-
следуемой формы связи с линейной;

коэффициент частной корреляции , характеризующий
тесноту связи между изучаемыми переменными при условии, что
влияние остальных факторов исключается;

коэффициент множественной корреляции , характеризующий суммарное влияние всех факторов на величину Y;

б) в случае нелинейной формы связи

корреляционное отношение р, которое является характеристи-
кой, насколько строго соблюдается функциональная связь между
исследуемыми переменными. Этот показатель применим и для оценки
тесноты связи в случае линейной формы связи. В этом случае он
равен абсолютному значению коэффициента парной корреляции;

множественное корреляционное отношение , которое
является характеристикой тесноты связи между Y и Х. Аппарат корреляционно-регрессионного анализа используется в двух направлениях:

1) для проведения статистического анализа результатов наблюдений пассивных экспериментов, в которых независимые переменные Х. не могут изменяться экспериментатором, т.е. не регулируются. В результате такого анализа решение вопроса о виде формы связи
не является окончательным, т.е. можно принять в качестве математической модели процесса большое число уравнений регрессии, которые могут удовлетворять полученным экспериментальным данным;

2) совместно с методом наименьших квадратов для планирования статистических экспериментов и анализа их результатов. В этом
случае планирование экспериментов осуществляется в соответствии
с принятым видом уравнения связи Y и Х.

В соответствии с числом учитываемых независимых переменных
Х i и характером связи между Y и Х различают:

а) по количеству исследуемых переменных

парный корреляционно-регрессионный анализ;

множественный корреляционно-регрессионный анализ;

 

б) в зависимости от формы связи

линейный корреляционно-регрессионный анализ;

нелинейный корреляционно-регрессионный анализ.

Метод наименьших квадратов. Широкое распространение в практике математического моделирования получили уравнения регрессии вида:

у = f (х),

где х — величина, которая рассматривается как случайная независимая переменная;

у — случайная зависимая величина. При линейной форме связи
эту зависимость можно выразить уравнением прямой:

Y = b 0 + b 1 Х,

для построения, которого требуется проведение экспериментов в объеме n, в каждом из которых должна фиксироваться пара значений (х i; у i). Результаты эксперимента представляются либо в виде таблицы (табл. 5.1), либо в виде графиков (рис. 5.1).

Таблица 5.1

Значение фактора Х i Х 1 Х 2 ... Х i ... Х n
Значение функции Y i Y 1 Y 2 ... Y i ... Y n






Дата добавления: 2015-04-16; просмотров: 496. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия