Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Минимизация булевых функций. Карты Карно





 

Сложность логической функции, как уже было отмечено выше, определяется сложностью ее аналитической записи. Минимальной формой логической функции на некотором множестве фиксированных операций (базисе) можно считать та­кую, которая содержит минимальное число суперпозиций функций базиса, допус­кая и скобки. Однако построить эффективный алгоритм такой минимизации с по­лучением минимальной скобочной формы трудно.

Более простой задачей минимизации является нахождение мини­мальная ДНФ функции. Для этой задачи существуют простые эффективные алгоритмы. Один из них основан на применении карт Карно.

Карта Карно – это двумерная табличная форма представления булевой функции, позволяющая в наглядной графической форме легко отыскать минимальные ДНФ логических функций. Каждой клетке в таблице сопоставляется дизъюнкт СДНФ ми­нимизируемой функции, причем так, что любым осям симметрии таблицы соот­ветствуют зоны, взаимно инверсные по какой-либо переменной. Такое располо­жение клеток в таблице позволяет легко определить склеивающиеся термы СДНФ (отличающиеся знаком инверсии только одной переменной): они располагаются в таблице симметрично. Например, следующая карта Карно построена для импликации двух переменных х ® у. В ячейки карты вписываются значения из таблицы истинности функции, при этом, если перед соответствующей переменной стоит знак отрицания, то в таблице истинности выбирается строка с ложным значением данной переменной, иначе – с истинным значением.

 

 

Все четыре клетки соответствуют всем воз­можным конъюнкциям СДНФ функции 2 переменных. Единичные значения функ­ции показывают те дизъюнкты, которые присутствуют в СДНФ этой функции. Распо­ложения элементов в картах Карно функции 2 переменных таково, что в один конъюнкт эта переменная входит без отрицания, а в дру­гой – с отрицанием. Алгоритм поиска минимальной ДНФ по карте Карно основан на выявлении на карте минимального количества максимальных квадратов или прямоугольников со сторонами, равными степени двойки, так, чтобы они состояли только из ячеек, содержащих единицы. Для приведенной карты Карно единичные значения покрывают ячейки с координатами Ø х и у, соответственно искомая минимальная ДНФ будет Ø х Ú у.

Рассмотрим другую логическую функцию f = Ø p Ú q Å r Ù q Ù (p Ú r). Знаком Å обозначается операция сложения по модулю 2 или «исключающее или» (XOR – eXclusive OR), которая определяется следующим образом:

 

х у х Å у
0 0 0
0 1 1
1 0 1
1 1 0

 

Таблица истинности для данной формулы имеет следующий вид:

 

p q r f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

 

Карта Карно для функции трех переменных должна содержать, очевидно, 8 ячеек. Подобную карту можно изобразить следующим образом:

 

 

Для этой карты Карно единичные значения присутствуют в ячейках с координатами q Ù Ø r и Ø q Ù Ø p, соответственно минимальная ДНФ будет q Ù Ø r Ú Ø q Ù Ø p.

В силу симметрии карт Карно при построении прямоугольников возможно объединение ячеек, находящихся в крайних позициях, так как при ином расположении координат строк или столбцов (переменных без отрицания и с отрицанием) крайние ячейки окажутся внутри карты. Следующие две карты Карно эквивалентны (местами поменялись координаты r и Ø r) и на них указано корректное объединение ячеек в прямоугольные области:

 

Карты Карно также удобны и для минимизации не полностью определенных функций. Например, пусть объявлена функция, у которой не определено часть значений:

 

x y z f
0 0 0 -
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 -
1 1 0 1
1 1 1 -

 

При построении карты Карно для этой функции неопределенные значения можно заменить любыми – 0 или 1. Таким образом, выявляя на карте Карно прямоугольники из единиц, можно использовать ячейки, не содержащие значений.

 

 

Для данного примера минимальная ДНФ равна y Ú Ø x.







Дата добавления: 2015-04-16; просмотров: 1343. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия