Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Совершенная конъюнктивная нормальная форма





 

Элементарной дизъюнкцией п пере­менных называется дизъюнкция переменных или их от­рицаний.

Конъюнктивной нормальной формой (КНФ) формулы А называется равносильная ей форму­ла, представляющая собой конъюнкцию элементарных дизъюнкций.

Для любой формулы алгебры логики путем равносиль­ных преобразований можно получить ее КНФ, причем не единственную.

Например, для формулы А = Ø (х Ú ух Ù у имеем:

А = (Ø (х Ú у) ® х Ù у) Ù (х Ù у ® Ø (х Ú у)) =

= (х Ú у Ú х Ù у) Ù (Ø (х Ù у) Ú Ø (х Ú у)) =

= (х Ú х Ú у) Ù (х Ú у Ú у) Ù (Ø х Ú Ø у Ú Ø х) Ù (Ø х Ú Ø у Ú Ø у), то есть

КНФ А = (х Ú х Ú у) Ù (х Ú у Ú у) Ù (Ø х Ú Ø у Ú Ø х) Ù (Ø х Ú Ø у Ú Ø у).

Но так как х Ú х = х, у Ú у = ух Ú Ø х = Ø ху Ú Ø у = Ø у, то

КНФ A = (х Ú у) Ù (х Ú у) Ù (Ø х Ú Ø у) Ù (Ø х Ú Ø у).

А так как (х Ú у) Ù (х Ú у) = х Ú у,(Ø х Ú Ø у) Ù (Ø х Ú Ø у) = (Ø х Ú Ø у), то

КНФ A = (х Ú у) Ù (Ø х Ú Ø у).

КНФ А называется совершенной конъюнктивной нормальной формой формулы А (СКНФ А), если для нее выполнены условия:

  • Все элементарные дизъюнкции, входящие в КНФ А, различны.
  • Все элементарные дизъюнкции, входящие в КНФ А, содержат все переменные.
  • Каждая элементарная дизъюнкция, входящая в КНФ А, не содержит двух одинаковых переменных.
  • Каждая элементарная дизъюнкция, входящая в КНФ А, не содержит переменную и ее отрицание.

Можно доказать, что каждая не тождественно истин­ная формула имеет единственную СКНФ.

Один из способов получения СКНФ состоит в исполь­зовании таблицы истинности для формулы Ø А. Действительно, получив с помощью таблицы истин­ности СДНФ Ø А, мы получим СКНФ А,взяв отрицание Ø (СДНФ Ø А), то есть СКНФ А = Ø (СДНФ Ø А).

Другой способ получения СКНФ, использующий рав­носильные преобразования, состоит в следующем:

  1. Путем равносильных преобразований формулы А получают одну из КНФ А.
  2. Если в полученной КНФ А входящая в нее эле­ментарная дизъюнкция В не содержит переменную хi, то, используя закон В Ú (xi Ù Ø xi) = В, элементар­ную дизъюнкцию В заменяют на две элементарные дизъ­юнкции В Ú xi и В Ú Ø xi,каждая из которых содержит переменную xi.
  3. Если в КНФ А входят две одинаковых элементар­ных дизъюнкции В,то лишнюю можно отбросить, пользуясь законом В Ù В = В.
  4. Если некоторая элементарная дизъюнкция, вхо­дящая в КНФ А, содержит переменную xi дважды, то лишнюю можно отбросить, пользуясь законом xi Ú xi = xi.
  5. Если некоторая элементарная дизъюнкция, вхо­дящая в КНФ А, содержит переменную xi, и ее отрица­ние, то xi Ú Ø xi = 1 и, следовательно, вся элементарная дизъюнкция имеет значение 1, а поэтому ее можно от­бросить, как истинный член конъюнкции.

Ясно, что после описанной процедуры будет получе­на СКНФ А. Например, для формулы А = x Ú y Ù (x Ú Ø y)КНФ А = x Ú (y Ù (x Ú Ø y)) = (x Ú y) Ù (x Ú x Ú Ø y). Так как обе элементарные дизъюнкции содержат все переменные (x и y), то первое и второе условие СКНФ выполнены. Элементарная дизъюнкция x Ú x Ú Ø y содержит переменную х дважды, но x Ú x = x, поэтому КНФ А = (x Ú y) Ù (x Ú Ø y); причем, ни одна из элементарных дизъюнкций не содержит переменную и ее отрицание. Значит, все условия СКНФ выполнены, и, следовательно, СКНФ А = (x Ú y) Ù (x Ú Ø y).

 

 







Дата добавления: 2015-04-16; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия