Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных уравнений методом Гаусса





Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса, состо­ящий в последовательном исключении неизвестных.

Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются при элементарных преобразованиях уравнений системы:

1) умножение обеих частей уравнения на число отличное от нуля;

2) прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

3) перестановка двух уравнений.

Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому,или треугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

Предположим, что коэффициент данной системы , в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент при был отличен от нуля.

Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

Здесь – новые значения коэффициентов и свободных членов, которые получаются после первого шага.

Аналогичным образом, считая главным элементом , исклю­чим неизвестное из всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

,

где , ,…, – главные элементы системы .

Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида , их отбрасывают, так как им удовлетворяют любые наборы чисел . Если же при появится уравнение вида , которое не имеет решений, то это свидетельствует о несовместности системы.

При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные , которые называют свободными. Затем выражение переменной из последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная . Аналогичным образом последовательно определяются переменные . Переменные , выраженные через свободные переменные, называются базисными (зависимыми). В результате получается общее решение системы линейных уравнений.

Чтобы найти частное решение системы, свободным неизвестным в общем решении придаются произвольные значения и вычисляются значения переменных .

Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

.

Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных не равно числу уравнений .

Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу к ступенчатому виду, легко определить ранги матрицы и расширенной матрицы и применить теорему Кронекера - Капелли.

Пример 2.1 Методом Гаусса решить систему

Решение. Число уравнений и число неизвестных .

Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов .

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.

.

В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.

Так как ,система является совместной и определенной.

Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения . Подставим во второе уравнение и получим .

Подставим и в первое уравнение, найдём .

Итак

 

Пример 2.2. Исследовать систему на совместность и в случае совместности найти решение:

Решение. Применим к данной системе метод Гаусса.

Запишем расширенную матрицу системы, предварительно для удобства вычислений поменяв местами вторую и первую строку. Приведем ее к ступенчатому виду.

̴ ̴ .

 

Найдем ранги матриц: . Так как ,то система является несовместной, т.е. не имеет решений.

Иначе говоря, система содержит противоречивое уравнение вида:

или , поэтому является несовместной.








Дата добавления: 2015-04-16; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия