Студопедия — Решение систем линейных уравнений методом Гаусса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных уравнений методом Гаусса






Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса, состо­ящий в последовательном исключении неизвестных.

Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются при элементарных преобразованиях уравнений системы:

1) умножение обеих частей уравнения на число отличное от нуля;

2) прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

3) перестановка двух уравнений.

Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому,или треугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

Предположим, что коэффициент данной системы , в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент при был отличен от нуля.

Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

Здесь – новые значения коэффициентов и свободных членов, которые получаются после первого шага.

Аналогичным образом, считая главным элементом , исклю­чим неизвестное из всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

,

где , ,…, – главные элементы системы .

Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида , их отбрасывают, так как им удовлетворяют любые наборы чисел . Если же при появится уравнение вида , которое не имеет решений, то это свидетельствует о несовместности системы.

При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные , которые называют свободными. Затем выражение переменной из последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная . Аналогичным образом последовательно определяются переменные . Переменные , выраженные через свободные переменные, называются базисными (зависимыми). В результате получается общее решение системы линейных уравнений.

Чтобы найти частное решение системы, свободным неизвестным в общем решении придаются произвольные значения и вычисляются значения переменных .

Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

.

Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных не равно числу уравнений .

Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу к ступенчатому виду, легко определить ранги матрицы и расширенной матрицы и применить теорему Кронекера - Капелли.

Пример 2.1 Методом Гаусса решить систему

Решение. Число уравнений и число неизвестных .

Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов .

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.

.

В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.

Так как ,система является совместной и определенной.

Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения . Подставим во второе уравнение и получим .

Подставим и в первое уравнение, найдём .

Итак

 

Пример 2.2. Исследовать систему на совместность и в случае совместности найти решение:

Решение. Применим к данной системе метод Гаусса.

Запишем расширенную матрицу системы, предварительно для удобства вычислений поменяв местами вторую и первую строку. Приведем ее к ступенчатому виду.

̴ ̴ .

 

Найдем ранги матриц: . Так как ,то система является несовместной, т.е. не имеет решений.

Иначе говоря, система содержит противоречивое уравнение вида:

или , поэтому является несовместной.








Дата добавления: 2015-04-16; просмотров: 564. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия