Построение оптических транспондеров
Оптические транспондеры предназначены для ввода/вывода оптических сигналов информационной нагрузки непосредственно в оптические каналы DWDM, а также для обеспечения регенерации сигналов в оптических каналах. В зависимости от назначения различают следующие виды транспондеров: - транспондеры ввода/вывода клиентских сигналов; - транспондеры-регенераторы сигналов оптических каналов. Транспондеры ввода/вывода могут поддерживать различные виды клиентских сигналов с фиксированной скоростью передачи, например, сигналы SDH или с переменной скоростью передачи (табл.3.1.).
Виды клиентских сигналов Таблица 3.1
В состав транспондера входят компоненты, необходимые для поддержки одного направления передачи, а именно: - оптический приемник; - подсистема прямого исправления ошибок (FEC): - оптический передатчик. Обработка трафика в транспондерах осуществляется следующим образом. В транспондере ввода (рис.3.1) приемник клиентской части преобразует интерфейсный оптический сигнал в электрический сигнал внутреннего формата.
Рис. 3.1. Транспондеры ввода и вывода
Из сигнала с фиксированной скоростью передачи выделяется составляющая тактовой частоты. После этого импульсы цифрового сигнала полностью восстанавливаются, т.е. выполняются функции регенерации типа 3R (рис.3.2): • восстановление амплитуды импульсов (Reamplification); • восстановление формы импульсов (Reshaping); • восстановление временных соотношений импульсов (Retiming).
Рис. 3.2. Типы регенерации Для восстановления сигналов нагрузки с переменными скоростями передачи используется регенерация типа 2R: - восстановление амплитуды импульсов (Reamplification); - восстановление формы импульсов (Reshaping). Восстановленный информационный поток структурируется в транспортные блоки оптического канала OTUk и подается на подсистему прямого исправления ошибок (FEC). Для прямого исправления ошибок используется код Рида-Соломона РС(255, 239), обладающий высокой эффективностью в средах с пакетными ошибками. Код РС(255, 239) является недвоичным кодом (алгоритм FEC работает с байтовыми символами) и характеризуется следующими параметрами: - длина кодового слова n = 255 байт; - количество ошибок, исправляемых в кодовом слове t = 8; - количество ошибок, обнаруживаемых в кодовом слове 2×t = 16; - количество информационных символов в блоке данных k = n–2×t =239. В процессе формирования кода с исправлением ошибок сигнал OTUk разделяется на блоки данных. По каждому блоку данных в кодере FEC вычисляются проверочные символы кода Рида-Соломона. Блоки данных и проверочные символы образуют кодовые слова, которые подаются на линейный оптический передатчик. Линейный оптический передатчик преобразует поток кодовых слов в “цветной” интерфейсный сигнал ОТМ-0,m с номинальным уровнем мощности передачи и рабочей длиной волны, соответствующей сетке длин волн DWDM G.694.1. В транспондере вывода (рис.3.1)сигнал оптического канала в линейном приемнике преобразуется в электрический сигнал и после регенерации в виде последовательности кодовых слов подается на подсистему FEC. В декодере FEC производится деление каждого кодового слова на порождающий полином. Остаток от деления кодового слова на порождающий полином называется синдромом. По синдрому устанавливается наличие ошибок в любом символе кодового слова, и они автоматически исправляются. Из откорректированного сигнала OTUk “выгружается” сигнал полезной нагрузки, который поступает на клиентский оптический передатчик. Транспондер-регенератор (рис.3.3) оборудуется только линейными приемопередатчиками. Ошибки, обнаруженные подсистемой FEC, исправляются и не проходят через регенератор. Это обеспечивает улучшение характеристик системы передачи.
Рис. 3.3. Транспондер-регенератор В зависимости от типа транспондера подсистема FEC может работать в одном из следующих режимов: - только кодирование в транспондере ввода; - только декодирование в транспондеревывода; - декодирование и кодирование в транспондере-регенераторе; - кодирование и декодирование выключено (обход подсистемы FEC). Что дает применение кода Рида-Соломона РС(255, 239)? Использование кода с исправлением ошибок приводит к увеличению скорости передачи в оптическом канале примерно на 7%, однако при этом энергетический выигрыш системы передачи (ЭВК) составляет порядка 4…6 дБ (рис.3.4), что позволяет увеличить длину участка регенерации при заданном коэффициенте ошибок по битам. Рис. 3.4. Энергетический выигрыш кодирования
В усовершенствованной системе прямого исправления ошибок (E-FEC) используется стандартный алгоритм формирования биортогонального каскадного кода BCH, Рек. G.975.1. Система Е-FEC обладает большей исправляющей способностью (обеспечивает большую вероятность обнаружения и исправления ошибок), чем система FEC. В результате обеспечивается более высокая чувствительность оптического приемника (меньшее отношение оптический сигнал/шум - OSNR) при заданном коэффициенте ошибок, чем в режиме с FEC. Энергетический выигрыш системы передачи с 7% Е-FEC составляет порядка 9,5 дБ (рис.3.11). Это позволяет увеличить длину участка регенерации по сравнению с FEC. Информация о количестве исправленных ошибок может также использоваться для мониторинга эксплуатационных показателей оптического канала в соответствии с Рек. МСЭ G.826, G.828 и G.8201. При передаче сигналов SDH или GbE данные мониторинга эксплуатационных показателей обеспечиваются по стандартным параметрам ошибок для технологий SDH и GbE. Кроме того, на основе данных мониторинга эксплуатационных показателей может быть реализована автоматическая защита оптических каналов по схеме 1+1 на сетевом и аппаратном уровне. Время защитного переключения не превышает 10 мс.
|