Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные коды. Порождающая матрица линейного кода





 

Рассмотрим множество , состоящее из всех возможных –компонентных векторов , элементы которого . Очевидно, что образует –мерное векторное пространство. Выберем в этом пространстве линейно независимых векторов , что всегда возможно, поскольку в –мерном пространстве всегда существуют линейно независимых векторов. Построим множество , содержащее векторов, образованных как линейная комбинация вида:

.

Непосредственной проверкой легко убедиться, что множество замкнуто по сложению векторов и умножению их на скаляр из , и, следовательно, является векторным пространством, т.е. подпространством . Это подпространство имеет размерность и непосредственно является той конструкцией, которую назовем линейным кодом.

Двоичным линейным кодом является любое –мерное подпространство пространства векторов длины .

Поскольку подпространство содержит кодовых слов, то есть ни что иное, как число информационных символов, переносимых кодом, а – длина кода. Наряду с обозначением кода как код, встречается и другое, в котором используется еще один его параметр – кодовое расстояние: .

Построим матрицу размерности , строками которой служат вектора :

. (6.1)

Представив информационное сообщение в виде –компонентного вектора , произвольное слово линейного кода с учетом (6.1) может быть записано в виде

. (6.2)

Как можно видеть из (6.2), кодовое слово представляет собой результат произведения информационного вектора на матрицу , которую по этой причине называют порождающей матрицей линейного кода. Порождающая матрица используется для компактного описания линейного кода. Например, для задания (100,50) двоичного линейного кода путем перечисления всех его слов требуется бит, а с помощью порождающей матрицы – бит.

Следует особо подчеркнуть, что:

– любой линейный код содержит нулевое кодовое слово ;

– любая сумма слов линейного кода вновь дает кодовое слово, принадлежащее данному коду: если , то .

Теорема 6.3.1. Минимальное расстояние линейного кода равно наименьшему из весов ненулевых слов кода:

.

Доказательство: Согласно определению кодового расстояния и с учетом последних замечаний имеем

.

Данная теорема объясняет большую популярность линейных кодов, поскольку для определения кодового расстояния достаточно определить веса ненулевых векторов, а не осуществлять перебор пар кодовых слов.

Любой линейный код всегда может быть преобразован в эквивалентный (т.е. обладающий аналогичными параметрами ), которому отвечает каноническая (стандартная) порождающая матрица

, (6.3)

где единичная матрица, а – матрица размерности . Использование канонической порождающей матрицы (6.3) позволяет построить систематический линейный код, в котором информационные символы занимают первые позиций кодовых слов:

, (6.4)

где – проверочные символы кодового слова.

 







Дата добавления: 2015-04-19; просмотров: 1081. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия