Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные коды. Порождающая матрица линейного кода





 

Рассмотрим множество , состоящее из всех возможных –компонентных векторов , элементы которого . Очевидно, что образует –мерное векторное пространство. Выберем в этом пространстве линейно независимых векторов , что всегда возможно, поскольку в –мерном пространстве всегда существуют линейно независимых векторов. Построим множество , содержащее векторов, образованных как линейная комбинация вида:

.

Непосредственной проверкой легко убедиться, что множество замкнуто по сложению векторов и умножению их на скаляр из , и, следовательно, является векторным пространством, т.е. подпространством . Это подпространство имеет размерность и непосредственно является той конструкцией, которую назовем линейным кодом.

Двоичным линейным кодом является любое –мерное подпространство пространства векторов длины .

Поскольку подпространство содержит кодовых слов, то есть ни что иное, как число информационных символов, переносимых кодом, а – длина кода. Наряду с обозначением кода как код, встречается и другое, в котором используется еще один его параметр – кодовое расстояние: .

Построим матрицу размерности , строками которой служат вектора :

. (6.1)

Представив информационное сообщение в виде –компонентного вектора , произвольное слово линейного кода с учетом (6.1) может быть записано в виде

. (6.2)

Как можно видеть из (6.2), кодовое слово представляет собой результат произведения информационного вектора на матрицу , которую по этой причине называют порождающей матрицей линейного кода. Порождающая матрица используется для компактного описания линейного кода. Например, для задания (100,50) двоичного линейного кода путем перечисления всех его слов требуется бит, а с помощью порождающей матрицы – бит.

Следует особо подчеркнуть, что:

– любой линейный код содержит нулевое кодовое слово ;

– любая сумма слов линейного кода вновь дает кодовое слово, принадлежащее данному коду: если , то .

Теорема 6.3.1. Минимальное расстояние линейного кода равно наименьшему из весов ненулевых слов кода:

.

Доказательство: Согласно определению кодового расстояния и с учетом последних замечаний имеем

.

Данная теорема объясняет большую популярность линейных кодов, поскольку для определения кодового расстояния достаточно определить веса ненулевых векторов, а не осуществлять перебор пар кодовых слов.

Любой линейный код всегда может быть преобразован в эквивалентный (т.е. обладающий аналогичными параметрами ), которому отвечает каноническая (стандартная) порождающая матрица

, (6.3)

где единичная матрица, а – матрица размерности . Использование канонической порождающей матрицы (6.3) позволяет построить систематический линейный код, в котором информационные символы занимают первые позиций кодовых слов:

, (6.4)

где – проверочные символы кодового слова.

 







Дата добавления: 2015-04-19; просмотров: 1081. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия