Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные коды. Порождающая матрица линейного кода





 

Рассмотрим множество , состоящее из всех возможных –компонентных векторов , элементы которого . Очевидно, что образует –мерное векторное пространство. Выберем в этом пространстве линейно независимых векторов , что всегда возможно, поскольку в –мерном пространстве всегда существуют линейно независимых векторов. Построим множество , содержащее векторов, образованных как линейная комбинация вида:

.

Непосредственной проверкой легко убедиться, что множество замкнуто по сложению векторов и умножению их на скаляр из , и, следовательно, является векторным пространством, т.е. подпространством . Это подпространство имеет размерность и непосредственно является той конструкцией, которую назовем линейным кодом.

Двоичным линейным кодом является любое –мерное подпространство пространства векторов длины .

Поскольку подпространство содержит кодовых слов, то есть ни что иное, как число информационных символов, переносимых кодом, а – длина кода. Наряду с обозначением кода как код, встречается и другое, в котором используется еще один его параметр – кодовое расстояние: .

Построим матрицу размерности , строками которой служат вектора :

. (6.1)

Представив информационное сообщение в виде –компонентного вектора , произвольное слово линейного кода с учетом (6.1) может быть записано в виде

. (6.2)

Как можно видеть из (6.2), кодовое слово представляет собой результат произведения информационного вектора на матрицу , которую по этой причине называют порождающей матрицей линейного кода. Порождающая матрица используется для компактного описания линейного кода. Например, для задания (100,50) двоичного линейного кода путем перечисления всех его слов требуется бит, а с помощью порождающей матрицы – бит.

Следует особо подчеркнуть, что:

– любой линейный код содержит нулевое кодовое слово ;

– любая сумма слов линейного кода вновь дает кодовое слово, принадлежащее данному коду: если , то .

Теорема 6.3.1. Минимальное расстояние линейного кода равно наименьшему из весов ненулевых слов кода:

.

Доказательство: Согласно определению кодового расстояния и с учетом последних замечаний имеем

.

Данная теорема объясняет большую популярность линейных кодов, поскольку для определения кодового расстояния достаточно определить веса ненулевых векторов, а не осуществлять перебор пар кодовых слов.

Любой линейный код всегда может быть преобразован в эквивалентный (т.е. обладающий аналогичными параметрами ), которому отвечает каноническая (стандартная) порождающая матрица

, (6.3)

где единичная матрица, а – матрица размерности . Использование канонической порождающей матрицы (6.3) позволяет построить систематический линейный код, в котором информационные символы занимают первые позиций кодовых слов:

, (6.4)

где – проверочные символы кодового слова.

 







Дата добавления: 2015-04-19; просмотров: 1081. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия