Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос № 8. Исторически первый из методов кодирования источника, подтверждающих теорему 2.2.3, был предложен в 1948-49 гг





Код Шеннона – Фано.

 

Исторически первый из методов кодирования источника, подтверждающих теорему 2.2.3, был предложен в 1948-49 гг. независимо друг от друга Р.Фано и К.Шенноном. Основу построения кода Шеннона – Фано составляет процедура дихотомии, т.е. последовательного разбиения ансамбля на две части.

На первом шаге (итерации) множество X разбивается на два подмножества таким образом, чтобы суммарные вероятности каждого из них были по возможности одинаковыми и близкими к 0,5. При этом сообщениям из одного подмножества в качестве первого символа кодового слова присваивается нуль, а сообщениям из другого – единица.

На втором шаге каждое из двух подмножеств, полученных на первом этапе, рассматривается как новое множество и подвергается аналогичному разбиению, в результате чего генерируется второй символ кодового слова для каждого сообщения. Подобные итерации продолжаются шаг за шагом до исчерпания всего ансамбля, т.е. до момента, когда все подмножества будут содержать по одному сообщению.

Таблица 2.2

    Итерации  
X p (x) I II III IV V Код
x 1 0,50            
x 2 0,20            
x 3 0,05            
x 4 0,15            
x 5 0,04            
x 6 0,03            
x 7 0,02            
x 8 0,01            

 

Пример 2.3.1. Рассмотрим дискретный источник, генерирующий 8 сообщений с вероятностями, представленными в табл. 2.2. Видно, что процесс заканчивается после 5 итераций, причем варианты разбиений можно проследить по жирным разграничительным линиям и полутоновому фону. На первом шаге сообщение x 1 сразу оказывается единственным элементом одного из подмножеств, поскольку его вероятность равна 0,5. Поэтому с присвоением x 1 кодового символа 0 кодирование этого сообщения завершается. Естественно, первый символ всех кодовых слов, отображающих сообщения из второго подмножества, полагается равным 1. Разумеется, конкретное соответствие между упомянутыми символами и подмножествами сообщений несущественно, и с равным успехом можно приписать x 1 символ 1, а остальным сообщениям – 0. Второе разбиение приводит к образованию двух подмножеств с равными суммарными вероятностями, первое из которых включает сообщения , а второе – все оставшиеся, т.е. . При этом в качестве второго кодового символа нуль приписывается словам первого из подмножеств, тогда как единица – словам второго. Дальнейшие действия ясны из таблицы и не нуждаются в комментарии.

Алгоритм Шеннона-Фано гарантирует соблюдение требования префиксности, так как каждое разбиение заканчивается присвоением разным подмножествам противоположных символов.

Обратимся теперь к границе (2.4) и сравним среднюю длину кодового слова с энтропией. Вычисления согласно (1.3) и (2.2) дают

и .

Из принципа построения кода Шеннона-Фано можно видеть, что сообщение, вероятность которого не ниже 1/2, будет закодировано на первом же шаге, сообщение с вероятностью между 1/4 и 1/2 – не позднее, чем на втором шаге и т.д. Таким образом, и средняя длина кода

.

Как видно, рассматриваемый код отвечает критерию экономности, установленному теоремой 2.2.3, доказывая тем самым справедливость последней. В то же время, алгоритм Шеннона-Фано не гарантирует построения наиболее экономного кода, уступая в этом смысле обсуждаемому ниже алгоритму Хаффмена.

 







Дата добавления: 2015-04-19; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2026 год . (0.015 сек.) русская версия | украинская версия