Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос № 8. Исторически первый из методов кодирования источника, подтверждающих теорему 2.2.3, был предложен в 1948-49 гг





Код Шеннона – Фано.

 

Исторически первый из методов кодирования источника, подтверждающих теорему 2.2.3, был предложен в 1948-49 гг. независимо друг от друга Р.Фано и К.Шенноном. Основу построения кода Шеннона – Фано составляет процедура дихотомии, т.е. последовательного разбиения ансамбля на две части.

На первом шаге (итерации) множество X разбивается на два подмножества таким образом, чтобы суммарные вероятности каждого из них были по возможности одинаковыми и близкими к 0,5. При этом сообщениям из одного подмножества в качестве первого символа кодового слова присваивается нуль, а сообщениям из другого – единица.

На втором шаге каждое из двух подмножеств, полученных на первом этапе, рассматривается как новое множество и подвергается аналогичному разбиению, в результате чего генерируется второй символ кодового слова для каждого сообщения. Подобные итерации продолжаются шаг за шагом до исчерпания всего ансамбля, т.е. до момента, когда все подмножества будут содержать по одному сообщению.

Таблица 2.2

    Итерации  
X p (x) I II III IV V Код
x 1 0,50            
x 2 0,20            
x 3 0,05            
x 4 0,15            
x 5 0,04            
x 6 0,03            
x 7 0,02            
x 8 0,01            

 

Пример 2.3.1. Рассмотрим дискретный источник, генерирующий 8 сообщений с вероятностями, представленными в табл. 2.2. Видно, что процесс заканчивается после 5 итераций, причем варианты разбиений можно проследить по жирным разграничительным линиям и полутоновому фону. На первом шаге сообщение x 1 сразу оказывается единственным элементом одного из подмножеств, поскольку его вероятность равна 0,5. Поэтому с присвоением x 1 кодового символа 0 кодирование этого сообщения завершается. Естественно, первый символ всех кодовых слов, отображающих сообщения из второго подмножества, полагается равным 1. Разумеется, конкретное соответствие между упомянутыми символами и подмножествами сообщений несущественно, и с равным успехом можно приписать x 1 символ 1, а остальным сообщениям – 0. Второе разбиение приводит к образованию двух подмножеств с равными суммарными вероятностями, первое из которых включает сообщения , а второе – все оставшиеся, т.е. . При этом в качестве второго кодового символа нуль приписывается словам первого из подмножеств, тогда как единица – словам второго. Дальнейшие действия ясны из таблицы и не нуждаются в комментарии.

Алгоритм Шеннона-Фано гарантирует соблюдение требования префиксности, так как каждое разбиение заканчивается присвоением разным подмножествам противоположных символов.

Обратимся теперь к границе (2.4) и сравним среднюю длину кодового слова с энтропией. Вычисления согласно (1.3) и (2.2) дают

и .

Из принципа построения кода Шеннона-Фано можно видеть, что сообщение, вероятность которого не ниже 1/2, будет закодировано на первом же шаге, сообщение с вероятностью между 1/4 и 1/2 – не позднее, чем на втором шаге и т.д. Таким образом, и средняя длина кода

.

Как видно, рассматриваемый код отвечает критерию экономности, установленному теоремой 2.2.3, доказывая тем самым справедливость последней. В то же время, алгоритм Шеннона-Фано не гарантирует построения наиболее экономного кода, уступая в этом смысле обсуждаемому ниже алгоритму Хаффмена.

 







Дата добавления: 2015-04-19; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия