Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос № 8. Исторически первый из методов кодирования источника, подтверждающих теорему 2.2.3, был предложен в 1948-49 гг





Код Шеннона – Фано.

 

Исторически первый из методов кодирования источника, подтверждающих теорему 2.2.3, был предложен в 1948-49 гг. независимо друг от друга Р.Фано и К.Шенноном. Основу построения кода Шеннона – Фано составляет процедура дихотомии, т.е. последовательного разбиения ансамбля на две части.

На первом шаге (итерации) множество X разбивается на два подмножества таким образом, чтобы суммарные вероятности каждого из них были по возможности одинаковыми и близкими к 0,5. При этом сообщениям из одного подмножества в качестве первого символа кодового слова присваивается нуль, а сообщениям из другого – единица.

На втором шаге каждое из двух подмножеств, полученных на первом этапе, рассматривается как новое множество и подвергается аналогичному разбиению, в результате чего генерируется второй символ кодового слова для каждого сообщения. Подобные итерации продолжаются шаг за шагом до исчерпания всего ансамбля, т.е. до момента, когда все подмножества будут содержать по одному сообщению.

Таблица 2.2

    Итерации  
X p (x) I II III IV V Код
x 1 0,50            
x 2 0,20            
x 3 0,05            
x 4 0,15            
x 5 0,04            
x 6 0,03            
x 7 0,02            
x 8 0,01            

 

Пример 2.3.1. Рассмотрим дискретный источник, генерирующий 8 сообщений с вероятностями, представленными в табл. 2.2. Видно, что процесс заканчивается после 5 итераций, причем варианты разбиений можно проследить по жирным разграничительным линиям и полутоновому фону. На первом шаге сообщение x 1 сразу оказывается единственным элементом одного из подмножеств, поскольку его вероятность равна 0,5. Поэтому с присвоением x 1 кодового символа 0 кодирование этого сообщения завершается. Естественно, первый символ всех кодовых слов, отображающих сообщения из второго подмножества, полагается равным 1. Разумеется, конкретное соответствие между упомянутыми символами и подмножествами сообщений несущественно, и с равным успехом можно приписать x 1 символ 1, а остальным сообщениям – 0. Второе разбиение приводит к образованию двух подмножеств с равными суммарными вероятностями, первое из которых включает сообщения , а второе – все оставшиеся, т.е. . При этом в качестве второго кодового символа нуль приписывается словам первого из подмножеств, тогда как единица – словам второго. Дальнейшие действия ясны из таблицы и не нуждаются в комментарии.

Алгоритм Шеннона-Фано гарантирует соблюдение требования префиксности, так как каждое разбиение заканчивается присвоением разным подмножествам противоположных символов.

Обратимся теперь к границе (2.4) и сравним среднюю длину кодового слова с энтропией. Вычисления согласно (1.3) и (2.2) дают

и .

Из принципа построения кода Шеннона-Фано можно видеть, что сообщение, вероятность которого не ниже 1/2, будет закодировано на первом же шаге, сообщение с вероятностью между 1/4 и 1/2 – не позднее, чем на втором шаге и т.д. Таким образом, и средняя длина кода

.

Как видно, рассматриваемый код отвечает критерию экономности, установленному теоремой 2.2.3, доказывая тем самым справедливость последней. В то же время, алгоритм Шеннона-Фано не гарантирует построения наиболее экономного кода, уступая в этом смысле обсуждаемому ниже алгоритму Хаффмена.

 







Дата добавления: 2015-04-19; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия