Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос № 6. Теорема 2.2.1. (Неравенство Крафта.) Пусть ансамбль источника X содержит L сообщений





Теорема 2.2.1. (Неравенство Крафта.) Пусть ансамбль источника X содержит L сообщений . Тогда для существования двоичного префиксного кода с длинами слов , необходимо и достаточно выполнение неравенства:

(2.1)

При неравномерном кодировании длина кодового слова случайна, поэтому мерой экономности кодирования может служить среднее количество символов на сообщение – средняя длина кодового слова , определяемая соотношением

. (2.2)

Следующие две теоремы, приводимые без доказательства, связывают среднюю длину неравномерного кода со статистикой источника.

Теорема 2.2.2. Пусть задан ансамбль с энтропией H (X). Тогда средняя длина слова произвольного однозначно декодируемого неравномерного кода не меньше энтропии источника:

(2.3)

Следует отметить, что равенство в (2.3) достигается только при , и значит, . Так как – целое, то указанные равенства выполняются для всех x, если их вероятности являются степенями двойки с целым отрицательным показателем.

Определение 2.2.2. Код источника, для которого средняя длина кодовых слов равна наименьшему из возможных значений, называется оптимальным.

Теорема 2.2.3. Для дискретного источника с энтропией H (X) существует неравномерный префиксный код, средняя длина кодовых слов которого подчиняется неравенству

(2.4)

Приведенные теоремы 2.2.2 и 2.2.3 представляют собой обратную и прямую теоремы кодирования элементарных сообщений источника. Прилагательное «элементарное» здесь использовано для того, чтобы отличить данный вариант кодирования от варианта, при котором в кодовые слова отображаются не отдельные сообщения, а блоки сообщений, выдаваемых источником последовательно во времени.







Дата добавления: 2015-04-19; просмотров: 517. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия