Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Циклические кодеры





 

Все рассмотренные ранее методы кодирования и декодирования могут быть использованы и для циклических кодов, учитывая их линейность. Вместе с тем свойство цикличности предоставляет дополнительные возможности в плане уменьшения сложности построения кодера, особенно в случае его аппаратной реализации. Если допустимо формирование кода в не систематической форме, то схема кодирования особенно проста. Любой кодовый полином является результатом произведения информационного и порождающего полиномов, и компоненты соответствующего кодового вектора могут быть найдены, как свертка информационной последовательности с последовательностью коэффициентов порождающего полинома . Данная операция реализуется с помощью фильтра с конечным импульсным откликом (КИО–фильтра), структура которого представлена на рис. 7.1.

Рассмотрим работу теперь реализацию кодера на примере систематического двоичного кода. Согласно алгоритму (7.6), наиболее трудоемкой операцией является нахождение остатка от деления произведения на порождающий полином . Для удобства обозначения используем краткую форму записи по

 
 

рождающего полинома , выделив в ней старшую степень :

Операция деления может быть реализована в виде итеративной процедуры. Введем в рассмотрение скаляр и –й полином остатка для обозначения промежуточных результатов на –м шаге итерации. Представим полином , как это уже было использовано для , с выделенной старшей степенью переменной , обозначив коэффициент при старшей степени через , а оставшуюся часть как , т.е.

.

Задав начальные значения в виде

на каждом последующем шаге итерации вычисляются

(7.8)

После шагов итерации в будет содержаться остаток от деления на , т.е. . Вычисление согласно вышеприведенному алгоритму может быть реализовано с помощью линейного регистра сдвига с обратной связью, представленного на рис. 7.2.

Элементами структуры регистра являются ячейки памяти, сумматоры по модулю 2 и перемножители. Информационные символы поступают в кодер по тактам, когда ключ замкнут, а находится в положении 1. Предположим, что на –м интервале времени коэффициенты –го многочлена остатков хранятся в регистре (и, следовательно, доступны для наблюдения в точках ), причем коэффициент при старшей степени содержится в крайней правой ячейке. При поступлении на вход кодера в –й момент времени информационного символа в точке схемы формируется коэффициент , а в точках – коэффициенты полинома согласно рекуррентному соотношению (7.8). Поскольку коэффициенты стоят при степенях, меньше старшей, они фактически являются коэффициентами , значения которых можно наблюдать в точках , и, значит, участвуют в формировании коэффициентов полинома , получаемых в точках . При поступлении –го такта указанные коэффициенты запоминаются в ячейках памяти регистра с тем, чтобы использовать их на этапе рекурсии в качестве коэффициентов .


Как следует из предшествующего рассмотрения, если перед –м тактом записать в регистр правильное состояние (т.е. коэффициенты ), то затем работа кодера будет осуществляться автоматически. Однако, нулевое начальное состояние регистра (перед поступлением ) является истинным, поскольку . Следовательно, указанный кодер Работает совершенно правильно и после -го такта будет содержать остаток . Получив остаток, ключ размыкается, а устанавливается в положение 2. В течение следующих тактов коэффициенты полинома остатка , являющиеся проверочными символами, считываются из регистра. В результате выполнения итеративного алгоритма на выходе регистра образуется систематическое кодовое слово, начинающееся информационным символом .

 
 

Пример 7.5.1. Кодер (7,4) циклического кода из примера 7.4.1, реализующий алгоритм кодирования (7.8), изображен на рис. 7.3. Таблица, представленная там же, содержит значения информационных символов, состояние регистра и выходные символы. Легко проверить, что для одного и того же информационного полинома результат кодирования либо с помощью кодера (правая колонка таблицы), либо при помощи порождающей матрицы примера 7.4.1 будет одинаковым.

 







Дата добавления: 2015-04-19; просмотров: 955. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия