Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расширенные конечные поля





 

Как уже известно, существуют конечные поля только порядка ( – простое, – натуральное числа). Простое поле порядка может трактоваться как множество остатков от деления целых чисел на : с операциями сложения и умножения по модулю . Аналогичным образом расширенное поле порядка , может трактоваться как множество остатков от деления полиномов над на некоторый неприводимый полином степени с операциями сложения и умножения по модулю . Другими словами, поле содержит все полиномы над полем степени не выше с общепринятыми операциями сложения и умножением, осуществляемым в два этапа – вначале производится обычное умножение полиномов, а затем удерживается только остаток от деления полученного произведения на полином .

Пример 8.1.1. Возьмем полином . Учитывая его неприводимость и тот факт, что , данный полином пригоден для построения поля . Для двух полиномов степени не выше двух, например, и , их сумма в поле определится, как . Вычисление их произведения в поле начинается обычным образом. На первом шаге находится . Затем осуществляется деление полученного произведения на с последующим удержанием остатка, а именно: . Таким образом, в соответствие с правилом умножения в поле имеем . Поскольку операция сложения полиномов выполняется непосредственным образом, необходимо построить полную таблицу умножения элементов расширенного поля по модулю неприводимого полинома , которая представлена в таблице 8.1.

Отметим, что среди полиномов степени не выше присутствуют и полиномы нулевой степени, т.е. элементы простого поля , сложение и умножение которых, осуществляются по правилам поля . Это означает, что простое поле полностью содержится в расширенном , или, другими словами, является подполем . Для поля порядок его простого подполя называется характеристикой поля . Роль данного параметра проявляется, например, при вычислении суммы или произведения элементов поля в полиномиальном представлении, поскольку значения соответствующих коэффициентов находятся на основе арифметики по модулю . Любое расширенное поле является полем характеристики 2, вследствие чего вычисление коэффициентов полиномов, рассматриваемых как элементы поля , всегда осуществляется по модулю два. В частности, для любого , поскольку .

 

Таблица 8.1.
´     x x +1 x 2 x 2+1 x 2+ x x 2+ x +1
                 
      x x +1 x 2 x 2+1 x 2+ x x 2+ x +1
x   x x 2 x 2+ x x +1   x 2+ x +1 x 2+1
x +1   x +1 x 2+ x x 2+1 x 2+ x +1 x 2   x
x 2   x 2 x +1 x 2+ x +1 x 2+ x x x 2+1  
x 2+1   x 2+1   x 2 x x 2+ x +1 x +1 x 2+ x
x 2+ x   x 2+ x x 2+ x +1   x 2+1 x +1 x x 2
x 2+ x +1   x 2+ x +1 x 2+1 x   x 2+ x x 2 x +1

 

 







Дата добавления: 2015-04-19; просмотров: 528. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия