Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корни многочленов над конечными полями. Построение многочленов на основе заданных корней





 

Одним из основных результатов обычной алгебры является положение, что любой многочлен степени с действительными или комплексными коэффициентами всегда имеет ровно действительных или комплексных корней , что означает возможность его представления (для нормированных полиномов) в виде

,

тем самым, указывая путь построения полинома по заданным корням . В том случае, когда необходимо, чтобы полином с обязательно вещественными коэффициентами (т.е. полином над полем вещественных чисел) содержал и комплексные корни, тогда во множестве корней каждому комплексному корню следует сопоставить комплексно сопряженный. Следовательно, для любого полинома с вещественными коэффициентами комплексные корни всегда имеют свою комплексно сопряженную пару. Как будет показано далее, подобная ситуация имеет место и в случае полиномов над конечными полями.

Ранее (см. 8.1) полиномы трактовались как форма представления элементов расширенного поля, в которой формальная переменная служила указателем позиции соответствующего коэффициента. Рассмотрим теперь полиномы как обычные функции, допускающие подстановку вместо переменной некоторых значений. В частности, рассмотрим двоичные полиномы (т.е. полиномы над полем ) и подставим в них вместо переменной элементы некоторого расширенного поля. Если при подстановке в двоичный полином в качестве аргумента некоторого имеет место , то говорят, что элемент , лежащий в расширенном поле , является корнем полинома .

Пример 8.4.1. Рассмотрим полином . Путем простой подстановки элементов легко убедиться, что данный полином не имеет корней в основном поле: . Вместе с тем, обратившись к таблице 8.2 примера 8.2.5, можно увидеть, что , следовательно, является корнем полинома в поле .

Следующее утверждение, сформулированное в виде теоремы, демонстрирует параллель с обычной алгеброй, о которой уже упоминалось ранее.

Теорема 8.4.1. Если является корнем многочлена над полем , то и все сопряженные с ним по степени два элементы , также являются корнями полинома .

Доказательство: Пусть – корень полинома . Тогда при подстановке в выполняется соотношение

.

Если теперь в вместо подставить , то получим выражение

,

которое, с учетом теорем 8.3.1–8.3.2, преобразуется к виду

.

Следовательно, если – корень многочлена , то и является корнем этого полинома. Не составляет труда показать, что и элементы , поля также являются корнями полинома .

Пример 8.4.2. Возвращаясь к условиям примера 8.4.1, можно убедиться, что полином наряду с имеет корнями следующие элементы:

;

,

которые являются сопряженными по степени 2 с . Поскольку , то, следовательно, найдены все корни полинома .

Пусть – расширение простого поля и пусть – некоторый ненулевой элемент поля . Тогда приведенный неприводимый (или простой) полином наименьшей степени над , для которого , называется минимальным многочленом над . Обозначим подобный полином, как и сформулируем следующее утверждение.

Теорема 8.4.2. Пусть длина цикла сопряженных с по степени 2 элементов. Тогда

.

Таким образом, на основании теоремы 8.4.2 минимальный многочлен элемента может быть представлен в виде

,

где – длина множества 2–сопряженных с элементов.

Пример 8.4.3. Используя результаты примера 8.4.2, решим обратную задачу построения минимального полинома для элемента . Тогда на основании последнего утверждения

.

что и следовало ожидать.

Теорема 8.4.3. В конечном поле , , любой ненулевой элемент удовлетворяет соотношению

или ,

а, значит, является корнем бинома

.

Доказательство:Пусть имеет мультипликативный порядок , который, согласно теореме 8.2.1, делит , т.е. число ненулевых элементов поля. Тогда

,

а значит, является корнем многочлена и, следовательно, корнем бинома .

Тогда на основании теоремы 8.4.3 и того факта, что все ненулевые элементы поля могут быть выражены как некоторая степень примитивного элемента , выполняется соотношение

 







Дата добавления: 2015-04-19; просмотров: 908. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия