Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ошибка декодирования. Неравенство Фано





 

Пусть имеются два дискретных ансамбля и объема M с заданными совместными вероятностями , где . Хотя доказываемое соотношение имеет место для любых ансамблей, для наших целей удобно сразу считать ансамбль множеством передаваемых кодированных сообщений, а – множеством решений на выходе канала о том, какое из сообщений передавалось. В подобной формулировке частное решение может не совпадать с переданным сообщением . Подобное событие, если оно имеет место, получило название ошибки решения (или декодирования). Тогда полную (среднюю) вероятность ошибки декодирования можно записать как

, (3.17)

а вероятность правильного решения

. (3.18)

Две характеристики – остаточная энтропия и вероятность ошибки декодирования – несут информацию о надежности передачи данных по каналу. В связи с этим между ними существует взаимная связь, которая определяется следующей теоремой.

Теорема 3.4.1. (Неравенство Фано) При фиксированной вероятности ошибки условная (остаточная) энтропия

, (3.19)

где – энтропия двоичного ансамбля.

Замечание. В приложении к задачам связи представляет собой условную энтропию ансамбля передаваемых сообщений относительно множества решений. Эта величина характеризует в среднем степень неуверенности в правильности решения о переданном сообщении, остающейся после того, как решение уже вынесено. Поэтому ранее введенное для нее наименование "остаточная энтропия" вполне естественно. В литературе нередко фигурирует также под названием ненадежность передачи, поскольку ею измеряется количество информации, потерянной в канале из-за действия помех.

Неравенству Фано можно дать следующую полезную интерпретацию. После того как решение выдано, неопределенность относительно переданного сообщения можно разбить на две компоненты. Первая из них, связанная с правильностью или ошибочностью решения, есть неопределенность ансамбля из двух событий, имеющих вероятности и . Эта часть неопределенности учитывается энтропией . Если же ошибка имела место, вступает в действие вторая компонента неопределенности, учитывающая неизвестность, какое именно из возможных сообщений, отличных от решения, было передано. Энтропия ансамбля из событий не больше , а, поскольку вклад второй компоненты проявляется с вероятностью , правая часть доказанного неравенства содержит именно с таким весом.

 







Дата добавления: 2015-04-19; просмотров: 980. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия