Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства операций над событиями





1. Коммутативность суммы и произведения: , .

2. Ассоциативность суммы и произведения:

, (АВ) С = А (ВС).

3. Дистрибутивность относительно сложения: .

4. Дистрибутивность относительно умножения (новое свойство, не выполняющееся для чисел): .

5. Включение А в В, т.е. , влечет за собой включение в , т.е. .

6. Совпадение двойного дополнения с исходным событием: .

7. Совпадение суммы и произведения одинаковых событий с самим событием

8. Законы де Моргана:

Определение. Сигма-алгеброй (σ-алгеброй) называют непустую систему подмножеств некоторого множества B, удовлетворяющую следующим двум условиям.

1. Если подмножество А принадлежит B, то дополнение A принадлежит B.

2. Если подмножества A 1, A 2,..., An,... принадлежат B, то их объединение и их пересечение принадлежит B.

Рассмотрим пространство элементарных исходов Ω. Элементы некоторой σ-алгебры B, заданной на Ω, будем называть событиями. В этом случае σ-алгебру B принято называть сигма-алгеброй (σ-алгеброй) событий.

Любая σ-алгебра событий содержит достоверное событие Ω и невозможное событие .

В случае конечного или счетного пространства элементарных исходов Ω в качестве σ-алгебры событий обычно рассматривают множество всех подмножеств Ω.

Замечание. Если в условии 2 счетное множество событий заменить на конечное, то получим определение алгебры событий. Любая σ-алгебра событий обязательно является алгеброй событий. Обратное утверждение, вообще говоря, не верно.







Дата добавления: 2015-03-11; просмотров: 1004. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия